IMPACT: International Journal of Research in Applie d, —

Natural and Social Sciences (IMPACT: IJRANSS) :" . _
ISSN(P): 2347-4580; ISSN(E): 2321-8851 3 H H fl F ﬂ—) — e 1
Vol. 5, Issue 3, Mar 2017, 107-134 4l N

© Impact Journals

SPECTRAL PROPERTIES OF SELF-ADJOINT LINEAR OPERATOR S
GEZAHEGN ANBERBER TADESSE
Lecturer, Dilla University,South Region, Ethiopia

ABSTRACT

The spectral theory mainly deals with a systemigltof inverse operators, their general properdied their

relation to the original operators.

Operators on Hilbert space is a basis for a congm&kie study of the spectral theory. In particulae, hermitian
or self-adjoint operators are very important in gnapplications. In this peper, we have generalibésiidea by showing

that the spectrum of a self-adjoint operator orilaeft space also consists entirely of real values.
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1. INTRODUCTION

While solving the system of linear algebraic ecuadi differential equations or integral equatiows, come

across the problem related to inverse operatioactég theory is concerned with such inverse proble

In chapter one we discuss the preliminary concepish are frequently used in the project work. hajpter Two
we discuss the spectral theory of bounded selftatdjoear operator and in chapter Three we dis&rsgection operators.

The definition of projection is suitable for spedtfamily. Projections are always positive operstor

In Chapter Four we discuss spectral family. Thespefamily of a bounded self-adjoint linear operaat points

of the resolvent set, at eigen values and at th@ pbcontinuous spectrum.

The spectral projection are the given, as in thended case, by defining, to be the orthogonal projection on the
null space of T — AI)* for all realA. If the two sets are vector spaces, we can intedile concept of a linear operator, if
the sets are normed spaces, we can construct gy tbBbounded linear operators on such spaces. dbgrerthat map
members of a specified space into the real or cexnpumbers are called functional. We shall alsaufis the Hilbert-
adjoint operators as well as the self-adjoint,anyitand normal operators. Finally, we shall lookhat spectral family of

the Hermitian (self-adjoint) operators which isiaportant aspect of functional analysis.

2. PRELIMINARY CONCEPT

2.1 Basic Definition

Norm: LetX be a vector space over a fifdd Then a mapping. ||: X — [0, ) is said to be a norm chif for
eachx,y e X, 1€ K

* Jlx|l = 0and ||x|| = 0 if and only if x = 0 (positive definiteness)
* llax|l = |Alllx|l (Homogeneity)

* llx+yll < llxll + llyll (triangle inequality).
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If norm is defined on a vector spakgthenXis said to be aormed space.
Linear Functional: A linear functional on Hilbert spadé is a linear map froml to C. That isp: H — C.

Bounded Linear Functional: A linear functionakp is bounded or Continuous, if there exists a comgtauch

that

loC)| < klix|l

The norm of a bounded linear functional is

loll = supjxy=1l@ )|

If y € H, then ¢, (x) = (y,x)is a bounded linear functional éh with ||¢, || = Iyl
Continuous Operator

An operator T from a normed space/ into another normed spac®/ is continuous at a
point x € D(T) if for any € > O there isa § > 0,such that ||Tx — Ty|| < € for all y € D(T) whenever ||x — y| <

6 thenT is continuous, if its continuous at all pointsiofT).
Let X be a vector space ovErand let(.,.): X X X — K, where for alk;,y,z € X
e (x+y,2z)=(x2)+ (y z) (linearity)
*  (ax,y) = alx,y) (Homogeneity)
*  (x,y) = (¥, x) (conjugate symmetry)
e (x,x) =0and{x,x) =0 © x = 0 (positive definiteness).

Then the pai(X,(.,.)) is said to be amner product space. Hilbert spaces a complete inner product space. If

T:X — X is a linear operator on linear spatehenl € K is calledeigen valueof T, if there exist an non- zeraexX then
Tx = Ax

Resolvent Set LetH be a Hilbert space and [BtD(T) — H be a linear operator with domai(T) < H. For
anyl € C, we define the operat@j= Al — T, thenl is said to be aegular value if R, is inverse operator. That iss

regular if provided,
*  Rjexists
* R, is abounded linear operator;
e R, is defined on a dense subspacé#l of
The resolvent set df is the set of all regular values Bf
p(T)={A € C: 1is aregular value of T}
Spectrum. The setr(T) = C — p(T)

The spectrum of an operator T is usually divided three disjoint unions.
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+  Point spectruna, (T).
e Continuous spectrum(T).
» Residual spectrum (T).
Where
0, (T) = {1 €a(T): ker(AI —T) # {0}}
0.(T) = {1 € a(T): (Al —T)™ ! is densely defined but not bounded}
0,.(T) ={1 € 6(T): R(AI —T) is not dense in H}
Elements ofo,, (T) are called eigenvalues.
Orthogonality
Two vectorsr and y in inner product space are said to be orthogdral j) = 0.
Orthonormality
The set containing those vectary such that (x,y) = 0 and ||x||=1 is said to be orthonormal set.
Orthogonal Complement
For non-empty subsétof Hilbert space we define the orthogonal compienes, denoted bys+.
St={yeH:(x,y)=0forall x € S}
Convergence of Sequence of Operator
Let X and Y be normed space. A Sequeli€g) of operators T,, € B(X,Y) is said to be:
* Uniformly Operator Convergent: If (T,,) converges in the norm &f(X,Y) toT € B(X,Y)
i.e|lT,—T|l—-0
»  Strongly Operator Convergent: If (T,x) converges strongly inY for every x € X
ITx — Tx|| = 0

Unitary Operator : A bounded linear operat®t H — H on Hilbert space H is said to be unitar{ifs bijective

and
T =T"1
Normal Operator: A bounded linear operat@t H — H on a Hilbert space is said to be normal

if TT* =TT

2.2. BASIC THEOREMS
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Theorem (Cauchy-Schwarz Inequality:- If X is inner product space then

1 1
1€, ¥ < (x, x)2(y. y)2
This equality holds if and only i and y are linearly depedent.
Proof. Continuity of Inner Product-If in an inner produck,, —» x andy,, —» y. Then(x,, y,,) = (x,y)

Reiszre-Presentation TheoremLetg be a continuous linear functional on a Hilbertcgba Then there is a

uniquez € H such thatp(x) = (x,z) forallx € H

Bounded Inverse TheoreraLet T: V — W be a bounded, linear and bijective operator froma8a spac# into

Banach spac# then the inverse operatBrl: W — V is also bounded.

Principle of Uniform Boundness Let(T,) be sequence of bounded, linear opergfok — Y from a Banach

spaceX into a normed spadé such that is bounded for everye X, say
[|Tox|l < Cyn=1,2
WhereCy is real number, then the sequence of the ndiffplis bounded, that is there@sa such thalT, || < C

Weierstress Approximation Theorem (Polynomia) - The set of all polynomials W with real coeféat is
dense in real spadda, b]. Hence for every € Cla,b] and givere > 0 there exist a polynomid such thafx(t) —
P(t)| <eforallt e Cla,b]

Proof in [1], [2] and [3]

3. SPECTRAL THEORY OF BOUNDED SELF-ADJOINT LINEAR O PERATORS
3.1. Spectral Properties of Bounded Self- Adjoint Inear Operators
3.1.1. Definition

LetH,and H, be complex Hilbert spaces andH[:—» H, bounded linear operator. Then thi#lbert-adjoint

operatoiT*: H, — H, defined to be the operator satisfying.
(Tx,y) =(x,T*y) forall x,y € H
3.1.1. Theorem
If (H, = H, = H), thenT" exists as bounded linear operator of norm
Il T* II=1I T Il and is unique.
Proof. LetH be complex Hilbert spaces afitl be operatowe need to show:
* T bounded.
e T*linear operator
e T"isunique.

Takeye Hand T € B(H). We define a bounded linear functiokébn H by x'(x) = (Tx,y) Vx,y € H > X'
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bounded sincex’(x) I=I (Tx,y) <1 Tx llll y Il.

By Riesz-representation theoremnthere is unique € H such that x'(x) = (x, z) for all x € H.here weobserve

thaty andz must have a certain relation so we can definep@natorT*y = z satisfyindTx,y) = (x,T*y) for all x € H.
Now let's seel’™* Linear. Lety,,y, € Hand a,8 € C,soVx € H
(x, T*(ayy + By2)) =(Tx,ay; + By;) =(Tx,ay;) +(Tx,By,)
=@(Tx,y1) + B(Tx,y2) = (x,aT"y1) + (x,BT"y;) = (x,aT*y; + BT"y,)
=T (ay, + By2) = aT"y, + BT"y,.
~ T* Linear operator.
We want show that the uniquenes Bf I=II T ||. Lety € H
I T*y 12 =(T*y,T*y) = (y,TT*y) < lylITT*yIl < lyIITINT yll
= ||IT*y|| < llylllIT]I, This shows thaf* is bounded
= [T < Tl 1)(
Similarly, letc € H
ITxI1? = (Tx, Tx) = (¢, T*Tx) < T Tl < T INTx| = Tl < |lc]HIT ]
SHTISIT 2)(
Combining(1) and (2) we get
N7 N=0TI m
3.1.2. Definition

A bounded linear operatdir H - H on acomplex Hilbert space H is said to be selfiatjor hermitian, if

T = T*. Equivalently, a bounded linear operdfois said to be self-adjoint, {fx,y) = (x,Ty) Vx,y € H.
3.1.2. Theorem
Let T:H —» H be a bounded linear operator on a Hilbert spacEhdn
e If T is self-adjoint, theqTx, x) is real for allx € H
» If His complex andTx, x) is real for allx € H, then the operator T is self-adjoint
Proof. 1. If T is self-adjoint, then for alt
m = (x,Tx) 1)
By definition(Tx, y) = (x, T*y) and since T is self-adjoint, we have:
(Tx,x) = {x, Tx) (2

Combining equation (1) and (2) gives
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(Tx,x) = (Tx,x)

Hence(Tx, x)is equal to its complex conjugate which impliesttitas real. If(Tx, x)is real for allx € H, then:

(Tx,x) = (Tx,x) =(x,T*x) =(T*x,x) . Hence 0= (Tx,x)—(T*x,x)=((T—-Tx,x) . Thus, T—-T*"=0
Thereforel' = T*

Remark 1. If T Self-adjoint or unitary, thefi is normal; in general the converse is not true.
Example L If I: H — H is identity operator, theR = 2il is normal, sinc&* = —2il, so thal’'T* = T*T = 41
butT =+ T* andT™ # T~ = I
3.1.3. Theorem
LetT: H — H be a bounded self-adjoint linear operator on cemplilbert space H. Then:
» All the eigenvalue of are real.
» Eigenvectors corresponding to distinct eigenvalug are mutually orthogonal.

Proof. a): LetA be any eigenvalue @f andx a corresponding eigenvectors. Thes 0 & Tx = Ax = A{x,x) =

(Ax, x) = (Tx,x) = (x, T*x) = (x, Tx) = (x,Ax) = 1 {x, x), using the self-adjointness of T.
= M, x)— AHx,x)=0
= (2 —i)(x,x) = 0.Here(x,x) = ||x]|? = 0
s A=2

 LetA&ube eigenvalues of T and letand y be corresponding eigenvectors. THan= Ax andTy = uy since

T is self-adjiont angk real.

Mx,y) = (Ax,y) =(Tx,y) = (x, T"y) = (x, Ty) = (x, uy) = plx, y)
= Mx,y) —plx,y) =0

=S @A-wWny)=01+u

“{x,y)=0iexly

Example 4:T = ( 2 1= i)

1+ 1

Spectrunof (1) = {0,3} distinct real numbers with eigenvectors.
X, = [_12+ i] and x, = [1 I i] respectively

Finally {x;,x,) = x,7x;, = [-1+i 2] [1 i" i] = 0. So the eigenvectors are orthogonal.

3.1.4. Theorem
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LetT:H — H be a bounded self —adjoint linear operator onraptex Hilbert spacé. Then a numbet belongs

to the resolvent sei(T) of T if and only if there exists @a> 0 such that for evexeH
ITaxll = cllx|| Ta =T — Al

Proof: =) Suppose thate p(T), R, = T™1,: H > H exists and is bounded giR,|| = k wherek > 0, since
R; # 0 now I1=R,T;, so that for every € H

=TNix=y,=x=T""y,sinceR, =T,
= x=RTHx

= [Ix[l = IR x|l < IR Tax |l = kIl Tax|l
= [Ix|l < kllTxxl|

1

= |ITyxll = - llx|l, wherec = -

~ ATaxll = cllxl
3.1.5. Theorem
The spectruna(T) of a bounded self-adjoint linear operdfoirf — H on a complex Hilbert spadé is real.

Proof: By theorem 2.1.5 we show thatia= a + if (a, 8 real) with 8 # 0 which belongs t@(T) so that
o(T) c R.

(Tyx,x) = (Tx,x) — A{x,x) forallx e H Q)
Since(Tx, x) and {(x, x) are real

(T,lx—,x) = (Tx,x) — Mx,x),here A = a — i (2)
Subtract equation (2) from (1)

(Tx, x) - (T, x) = (= A)(x,x) = 2B x|

So that

-2Im(Tyx, x) = 2iB||x||?

IM(Tyx, x) = Bllx|I?

1BI1Ix1? = Im(Tyx, x)| < [ITaxl x|

IBIIxll < [ITaxll, for |lx|| # O.

If B #0,then 1 € p(T). Hence fork € ¢(T) we must havg = 0. i.eA is real

3.2 Further Spectral Properties of Bounded Self-Adjint Linear Operators
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3.2.1 Theorem

The spectruna(T) of a bounded self-adjoint linear operafoH — H on a complex Hilbert space H lies in the
closed interval [m,M] on the real axis, where

m = inf,=1(Tx, x) M = sup,=1(Tx, x)

Proof: o(T) lies on the real axis. We show that any feal M + ¢ with ¢ > 0 belongs to the resolvent g&iT).

For everyx # 0 and v = ||x||"*x we have x = ||x||v and
(Tx,x) = |Ix|2(Tv, v) < |IxlPsup g, (TP, D) = (x, )M
Hence—(Tx, x) = —(x, x)M and by Cauchy-Schwartz inequality we obtain
(Tax|x|l = —(Tyx, x) = —(Tx, x) + A{x, x) = —(x, x)M + A(x, x)
> (=M + Dx,x) = Clix|I?
= [ITaxllllxll = Cllx|I?, l|x]l # 0
ITax|l = Cllx]|
~ A€ p(T)
3.2.2 Theorem
For any bounded self-adjoint linear operator T aomplex Hilbert space H we have:
ITIl = max(Iml, IM]) = supyy=1(Tx, x)|
Proof. By the Cauchy-Schwarz inequality
Sup|ix=1{Tx, X)| < supjy =1 [ITx||llx]l = [IT|l, where&l = supj=1[(Tx, x)|. Hence X < ||T||
We want show|T|| < K.IfTz = 0, therd < K||z||? = ||Tz|| < K Vz € H,||z|| = 1. OtherwiseT'z # 0 for anyz
of norm 1w = ||Tz||§z andw = ||Tz||_%Tz. Now sety,=v+w andy, = v — w. T is self-adjoint
(Ty1, 1) = (Tyz, y2) = 2({Tv,w) + (Tw, v))
= 2(Tz,Tz) + (T?z,z))
=2(Tz,Tz) +(TzTz))
= 2(2(Tz,Tz)) = 4(Tz,Tz) = 4||Tz||? (1)
Now for everyy = 0 and x = ||y||"y we have y = ||y|lx and
KTy, ) = llylI2KTx, x)| < llyll?supyz=1{TX, %)| = K|lyl|?, so that by the triangle inequality.
Ty1,¥1) = Ty2, y2)| < KTy, y) | + KTy2, y2)
< Kyl + 1ly211?) < 2K[vll* + lIwll*) = 4K||Tz|| &)

Combining (1) and (2) we get
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4\|Tz|1? < 4K||Tz||, ITz]| # O
[ITz|| < K by taking supremum over all z of norm 1.||T|| < K and K < ||T||
ITIl = K = max(|m/|, [M]) = supjjx=1(Tx, x)| m

3.2.3 Theorem.

The residual spectrum).(T) of a bounded self-adjoint linear operafolf — H on a complex Hilbert spadé is

empty

Proof. Suppose net.(T) # @. LetA € ¢,(T). By definition ofa,.(T), the inverse of; exists but its domain
D(T™1,) is not dense iH. Hence, by the projection theorem there ig & 0eH which is orthogonal ®(T 1)),
but®(T~1))is a range of;, hence(T,x,y) = 0,V x € H. sincel is real and self-adjoint, we obtaikx, T;y) = 0V x.
Takingx = T,y we gef|Ty||? = 0, so thaf;y = Ty — Ay = 0,since y # 0. This shows that is an eigenvalue @f but
contradictd € o, (T). Thereforg(T) =@ m

3.3 Positive Operators

In this section we can see the definitiorpaftial order is a binary relation£” over a sef? which is reflexive,

antisymmetric, and transitive ¥e, b, c € P. We have that:
* a < a (Reflexive)
* ifa<bandb < athena = b (Antisymmetrive)
* ifa<bandb < cthena < c (Transitive)
3.3.1. Definition

Abounded linear operatdt: H - H is called a positive operator if and onlyTifself-adjoint andTx,x) =

0 for all x € H. A bounded linear operatét H - H is said to bgositive, written

T 2 0if and only if (Tx,x) =0 forallx € H

Remark 2: The sum of positive operators is positive. Eveogitive operator on a complex Hilbert space i§ sel
adjoint.

The following theorem is like the familiar staterh@fout real numbers which says that when you piultivo

non-negative real numbers the result is a non-negeg¢al numbers.
3.3.1 Theorem

Let S andT be a positive and self-adjoint such ti§&t=TS. Then their produc§T is also self-adjoint and

positive.
Proof. Since(ST)* =T*S* =TS we see tha$T is self-adjoint if and only ifT = TS. We show thafT is
positive.This is true fom = 0. Assume it is true for any. We consider

S = ﬁS,Sn+1 =S, -5 (n=123......) ("
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SISy, (X1 5;%)x = (Sy = Sps1)x = S;x,T 2 0 and the continutity of inner product, we thus abtéor everyx €

Hand y; = Sjx (STx,x) = ISI(TSyx,x) = [SIimyo0 X7 1(TS; %%, %) = IS limye0 X7-1(Ty;, ;) 2 0

and prove by induction such that= S, =1 (**)

Forn = 1 the inequality £+) holds. Indeed, the assumpti®re S implies S; = Iis obtained by application of the

Schwarz inequalitySx|| = ||s]]]|x]|

(S1x,%) = (S, %) = o llsx Il = [lxl|? = (L, x)

>S5 =1L
Suppose«(*) holds for any= k that is 0 = S, = [.Thus,0 =1 -5, = I.
Sinces,, is self-adjoint, for every € H & y = S, x, we obtain
(k2 = Sx, x) = (U = S)Skx, Sx) = (U = S )y, y) Z 0.
By definition this proves, >(I — S) = 0. Similarly, S, (I — S,)? = 0.
Sinces,, is self-adjiont. It is clear that from remark &)m of positive operator is positive.
0 = 52U = Si) + ST = $i)* = S = Si” = Sisa
Hencel = S, and Si41 = I follows from S;,> Z0and I — S, Z 0
We now show thafSTx, x) = 0 for all x € H. Form(x*) we obtain successively
S =87 45,8 =52 +555 =5 +54, 5, =52+ S,° + 5>+ 8,4,
Sn =812 +S"+ S+ 8574+ 5" + Sua
SinceS,,;; = 0 this implies
SP+ 852+ 82+ 8 ++85 =85 -S,1=5
By the definition ofs and self-adjiontness 6}'s
ISl = BdSix, ;%) = Ty, x) = (S;%, %)
Sincen is arbitrary, the infinite seriggS; x||? + [|S,x||? + -
lim,,_, e Z;Ll”S]-x”z = 1S, x]1%. Hencelim,,_,o Spx = Sx.(X7=; $2)x = (S; — Spa1 )X = Six

lim,,_, e (Z}Ll sz) x =1lim, (8] — Spyq )x = Sy x.

All the S;'s commute withT" since they are sums and productSpt [|S||7'S, S andT commute. Using =

~ (STx,x) 2 0, thenST are positivem

3.3.2. Definition

A monotone sequend§;,) of self-adjoint linear operatof on Hilbert space H is a sequer(@) which is either

NAAS Rating: 3.00- Articles can be sent teditor@impactjournals.us




| Spectral Properties of Self-Adjoint Linear Operators 117 |

monotone increasing, that is,

The following theorem is a generalization of theniizar fact that if you have an increasing sequeateeal

numbers which is bounded above, then the sequameiges

3.3.2. Theorem
Let(T;,) be a sequence of bounded self-adjoint linear eperan a complex Hilbert spaékesuch that
TyST, STy ST, < S K (%)

WhereK is bounded self-adjointlinear operator nSuppose that arfy commutes withk and with every,.
Then(T,) is strongly operator convergef¥,x — Tx for all x € H) and limit operatofl is linear, bounded and self-

adjoint and satisfigs= K.

Proof. We consides,, = K — T,,. The sequenc§(S,,*x, x)) converge&/x € H;T,x — Tx, whereT is linear, self-
adjoint and bounded by uniform boundnees theof®sf, x) = (S,x, S,x) = (x,S,x). Therefores, is self-adjoint?
S =838 = (S — S DS = (T, — T,y)(k — T,y). Letm < n. ThenT,, — T,,, andK — T, are positive by(*), since these

operators commute, their product is positive. Hemc¢he leftS,,? — S,,S,, = 0, that is S,,> = S,,S,, for m < n.

Similarly $,8,, — $,% = $,,(Syn — S,) = (k — T,)(T,, — T,,) 2 0. So thafs,S,, = 5,2, togetherS,,> = S,.S,, =

$,%,m < n. By definition, using the self-adjointness 8f
(szx: x) = (Snsmx:x) = (Snzx; x) = (Snx; Snx> = ”Snxllz = 0. (**)

This show tha((Snzx,x)) with fixed x is a monotone decreasing sequenceaavi-negative numbers. Hence,

(¢S,*x, x)) converge¥/x € H.

We show thal,,x - Tx is converges. By assumption, ev&pcommute withevery,, and with K. Hence the

Sjs all commute. These operators are self-adjoint esi(S, S, x, x) = —2(S,%x, x) by (**) where m < n
ISmx = SpxI? = (S — S)%, (S — Sn)x)
= ((Sm — Sn)?x, %)
= (S, 2%, x) — 2(S, S, x) + (S, 2x, x)
= (S 2%, x) — (S, 2x, x).

Since §,x) is Cauchy sequence this completes. We show thatis self-adjoint becausg, is self-adjoint and

the inner product is continuous.

(Tx, x) = lim,, (T, x) = lim,_, o {x, T,x) = {x, Tx).
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We show thaf is bounded. Now we must show tffais bounded andrfx) converges to itup, ||T,,x|| must be

finite for everyx, there isM such thaM > 0.
= ||T, || < M,vn
= [ITx|l < M|l
= lim,, L0 || Tpx|| < M||x|| this implies ||Tx|| < M||x||.

HenceT is bounded, by uniform boundness theorem. Fif@hyx) = lim,_(T,x, x) = (Kx, x). Therefore

T=Kmn
3.4. Square Roots of Positive Operators
3.4.1. Definition

LetT: H — H be positive bounded self-adjoint linear operatorromplex Hilbert space H. Then a bounded self-

adjoint operatoA is called a square root Bfif, A2 = T. In addition,A = 0, thenA is called a positive square rootToaind

1
is denoted byl = Tz exists and unique.
3.4.1. Theorem

Every positive bounded self-adjoint linear operdtaf — H on a complex Hilbert spadé has a positive square

root A, which is unique. This operator A commutagwevery bounded linear operator Bnwhich commutes with.

Proof. a) We show that if the theorem holds under the anlhii assumptioff = I it also holds without that

1
assumption. If" = 0, we can takel = Tz = 0. LetT # 0 by Cauchy-Schwarz inequality.

(Tx, x) = [ITx|lllxll = T |1 = (Ix, x)

1

T . _
(mx,x) = (Ix, x), since ||T|| # 0 set Q = (”T”

), We obtain
(Qx,x) = ||x]|? = (Ix,x) that is Q = I.

1 1 1 1
Assuming tha has a unique positive square rddt= Qz we haveB? = Q andT = ||T||Q = Tz = ||T||zQz =

Tle = |IT||B? = |IT]|Q = T. Hence if we prove the theorem under the additiasalmptiorT = I.
* We obtain the existence of the operatos Tzl from A,x - Ax where A, =0 &
Apss = A, +§(T —4,)n=012,.. ()
We considefi), since 4, = 0,we have A; = %T,A2 =T- éTz -
Ansr = An+5(T— 4,7 )n=012,..

EachA,is polynomial ifT, and they also commutes with We now prove

A, SIn=01.2,.. (i)
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A, S A n=012,.. (iii)
1 .

Apx = Ax,A =Tz (iv)

ST =TS,= AS = SA )

WhereS is a bounded linear operator Hn
Proof (ii). This is true fom = 0. Assume true fon. Sincel — A,,_;is self-adjoint
(I —A,_1)*> Z0.AlsoT = I. This impliesI — T Z 0. From this(i)and we obtaifii).
0= -(I=Ap1)? +5U=T) =1 = Ay g —>(T = Apy®) = 1= A,
= 0=1-A,
Proof (iii). We use inductiorii) gives0 = 4, = A; = %T
We show tha#l,,_; = A, for fixedn implies4,, = A, from (i) we have;
Ansr = An = Ap +2(T = Ay%) = Aoy =5 (T = Ayi?)
= An =5 An" = Ay 3 A0’
= Ap = Aoy — A7 + A0
Z (A = An-)ll-5 (A + 4y )]
= (An = Ap-))l =5 2D] = 0.
Hence4,, — A,_; 2 0and(I — % A4, +4,_.) =0.

Therefored, = A, n=10,1,2, ...

Proof (iv).(4,) Monotone increasing biii) andA,, = I by(ii). Hence (by the theorem monotone sequence)
implies the existence of a bounded self-adjoinedin operatad. Such tha#l,x — Ax for all x € H, since(4,x)

convergegi) gives
Apy1x —Apx = %(Tx - Anzx) - 0asn— o
Tx — A%x = 0 Vx.
Tx = A%x,x # 0. HenceT = A?%. Also 4 = 0. Becausd = A, < A,, by (iii)
= lim,, 00 (A, x) = lim,, . (x, A,x) = (x, Ax) =(Ax, x) = 0, by continuity of inner product
Proof(v). LetS € L(H, H) be any linear operator that commute WAtISA4,, = A,,S,vn
Sinced,, » A, A,Sx — ASx. Using continuity of inner product $f

lim,_, SA,x = Slim,_,, A,x = SAx = lim,_,, A,Sx = ASx. HenceST =TS = AS = SA
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+ Uniqueness:Let bothA andB be positive square root &f Them? = B2 = T. Also BT = B*B = BB* = TB. So
thatAB = BA by (v). Letx € H be arbitrary ang = (A — B)x. Then{4y,y) = 0 & (By,y) 2 0, becausal =
0&B = 0. UsingAB = BA & A?> = B? we obtair{Ay,y) + (By,y) = {(A + B)y,y) = ((42 — B¥)x,y) = 0.

Hence(Ay,y) = (By,y) = 0, sinced = 0 andA is self-adjoint. It has itself a positive squamdtrC, that is
C?=A and C is self-adjoint. We obtaird = (4y,y) = (C%y,y) = (Cy,Cy) = ||Cy||? and Cy = 0,also Ay = C?*y =
C(Cy)=0.

Similarly, B 2 0 andB is self-adjoint, it has itself a positive squatrD. That isD? = B andD is self-
adjiont0 = (By,y) = (D%y,y) = (Dy,Dy) = ||Dy||? & Dy = 0, alsoBy = D?y = D(Dy) = 0. HenceBy = 0, sinceB =
0. Hence(A—B)y =0, usingy =(A—B)x,vx € H. |[Ax — Bx||? = ((4 — B)?>x,x) = (A — B)y,x) = 0. Hence
A = B. ThenA is unique.m

Example 5
Let T: L2(0,1) - L?(0,1)be a linear operator defined by
Tf(x) = xf(x) for all f € L2(0,1), for all x € (0,1)
e Show that T is a positive operator.
e Find the lower and upper bounds of T.
e Find norm of T.

Solution. (a)For all f € L2(0,1) we have thatl is self-adjoint
(Tf,9) = f, xf (xg@)) dx = f} f()xg(@)dx = (f,Tg) V f, g € [2(0,1)
(Tf.f) = Jy xf (ef () = [, x|f ()2 dx Z 0.
ThereforeT is positive operator.
»  First we Notice that
M = supy=o(Tf, f) = supypy=1 fy xIf 0)I2dx = supypy=y [ 1f (0)|2dx = 1

We prove thaM = 1, consider

0,if x€[0,1—¢)

fe@) = {8_71, if xe[l—c¢, 1]'

SIFIE = [ eldx=18&

1 1 2 1-(1-¢)2
M =(Tf., f) = f) xlfexlPdx = [ Zdx =T, == =1
M=1.

We proceed similarly in order to prove that= inf),=1(Tf, f) = 0 using the function
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_ S_Tl,ifx € [0, €]
9:(x) { 0,if x € [¢,1]

Hencem =0
@) TN = max(|m|, IM]) = supypy=KTf, ) =1

4. PROJECTIONS
4.1.1 Definition

Let H be a Hilbert space over Complex number. A bounidedr operatoP on isH called:
« aprojection, ifP? =P
«  An orthogonal projection, iP? = P and P* = P.
Note

The rangekan(P) = P(H) of a projection on a Hilbert spagékalways is a closed linear subspacéiain which

P acts like the identity. If in additioR is orthogonal, the® acts like zero operator GR(P))*.

If x=y+z with y e R(P) andz € (R(P))* = M(P) is the decomposition guaranteed by the projection
theorem, theiPx = y. Thus the projection theorem sets up a one —te €orrespondence between orthogonal projection

and closed linear subspaces.
x=y+z=Px+({—-P)x
This show that the projection &fontoYtisI — P
4.1.1. Theorem

A bounded linear operaté: H — H on a Hilbert spac# is a projection if and only iP is self-adjoint and

idempotent.

Proof. (=) Suppose thaP is a projection ord and denote?(H) by Y. ThenP? = P because for every €
H and Px = y € Y we have,P?x = Py =y, henceP?x = Px = P? = P is idempotent. Now consider any two vectors
x4, x,€ H, from decomposition we can write =y, + z, and x, = y, + z,, wherey,,y, €Y = R(P) and z,,z, € Y* =
N(P). Then,{y;,z,) = (y,,z,) =0, becaus& L YL. We show thatP is self-adjoint;(Px;,x,) = (y1,y, + 2,) =
V1,¥2) = (1 + 71,¥,) = (x4, Px;). Hence P is self-adjoint.

(<) Suppose thak is self-adjoint and idempotent, denof@{) by Y. Then for every € H
x=Px+({—-P)x

Orthogonality;Y = P(H) L (I — P)(H), follows from:

(Px,(I — P)v) = (x,P(I — P)v) = (x, Pv — P?v) = (x,0) = 0.

Let, Q = (I —P), y c kerQ can see fromQPx = Px — P?x = QPx = 0. Next,y D kerQ, Qx = x — Px =

Qx = x. HenceY = {0}, since{0} is closed, so inverse imafe: QPx = 0} = kerQ. HenceY is closed subspace #f.
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ThereforeY is projection orH.
4.1.2. Theorem
For any projectiory on a Hilbert spacH.
«  (Px,x)=|Px|?
e 0PI

« NPI=1L; |IPIl = 1if P(H) # {0}

e (Px,x) = (P%*x,x) = (Px, Px) = ||Px||?

e 0<||IPx||?2 = (Px,Px) = (Px,x) < ||x[?=(x,x) = 20<P <]

e By using Schwarz inequality;
(Px,x) = ||x|I?
IPx]|? < ||x]|?, since ||x]| # O
IPl=1,vx€eH (1)
IPx|l = IP(Px)Il = IPIIPxI|
IPx|| = [IP|[lIPx]|, since ||P]| # O
1=|P] .. (2)
By combining (1) and (2) we get|P|| =1 m

4.1.3. Theorem

Products projections on Hilbert spaéeare satisfying the following two conditions:

e P =PP,is projection on H if and only if the projectiafsand P, commute. TherP projectsH ontoY =
Y;NY, whereY; = P;(H).

» Two closed subspacé&sandV of H are orthogonal if and only if the correspondingjections satisfp, P, = 0.

Proof. I(<). Suppose tha, and P, commute, then show thatis self-adjiont and idempotetit= (P,P,)*
P,*P,* = P,P, = P,P, = P. HenceP* =P, thenP is self-adjoint. P? = (P,P,)? = (P,P,)(P,P,) = P,*P,* = P,P, =
P,P, = P. ThenP is idempotent. Henc® is projection. The®x = P, (P,x) = P,(P;x) = x,V x € H. SinceP, projectsH

ontoY;, we must have :
PX=X=P1(PZX)EY1
PX=X=P2(P1X)Ey2

Px €Y, NY, since x € H was arbitrary. This show projectsH intoY =Y, NY, . Actually P projectsH
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ontoY. Indeed, ity € Y, theny € Y; and ye Y,. Py = PP,y =P,y =y. Thenye Y, NY, ,y €Y HenceY =Y, NY,.

(=) . SupposeP = P,P, is projection defined orH{ . It must be self-adjoin{Py;,y,) = (PiPyy1,V2) =
(Py1, Poys) = (y1, P2 P1y2) = (y1,Py,). ThenP P, = P,P;.

I (=).fY LV,thenY nV = {0} and P,P,x = {0} for all x € H by part (a), so that, P, = 0.

(). If P,P, =0, then for everyy €Y andv € V. We obtain(y, v) = (P,y, P,v) = (y,P,P,v) = (y,0) = 0.
HenceY LV.m

3.1.5 Theorem
Let P, and P, be projections on Hilbert spagle Then:
* The sumP = P, +P, is a projection o{ if and only ifY; = P,(H) and Y, = P,(H) are orthogonal.
* If P = P,+P, is a projectionP projectsH ontoY =Y; @ Y,.
Proof. I(=). Suppose tha® = P, +P, is a projection.
Letx € Y, = |lx|*> = [|(P,+P)x||* = ((Py+P)x, (Py+P;)x)
= ((Py+P,)%x, x) = (P, +P,)x, x)
= (Pyx,x) + (Px, x)
= llxl1> + (P,%x, x)
= |lx|I? + [IPx||? = [|P,x]| = 0.
For anyy € Y, ande Y, (x,y) = (x, P,y) = (P,x,y) =(0,y) = 0 = (x,y,) = 0. ThereforeY; LY,.

(&) If Y, LY,, thenP,P, = P,P, = 0 which impliesP? = P. SinceP, andP; are self-adjoint, so i8; + P,.

HenceP is projection.

Il. We determine the closed subspace H onto whichP projects. Sinc®;, + P,,Vx€H.y =Px =P, x+
P,x. HereP,x € Y, andP,x €Y, hencey €Y, @ Y,.

So that;
YCY, Y, 1)

We show that o Y, @ Y,. Letv € Y; @Y, be arbitrary, thew = y, +y,, herey, €Y, and y, € Y, applying in
P.UsingY; 1Y,, thus we obtainpv = p, (y; +y,) + p,(¥1+y,) = p1y,. Hence,

vEYandY DY, BY, (2)
Combining(1) and(2 ) we have;

Y=Y1®Y2

4.2 Further Properties of Projections
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4.2.1 Theorem

Let P, andP, be projections defined on a Hilbert SpateDenote by; = P, (H)andY, = P,(H) the subspace
onto whichH is projected by, andP,, and letv'(P,) andNV (P,) be the Null space of these projection. Then tHewiing

conditions are equivalent.
e PP =PP, =P
« YicY,=P(H) cPH)
* N(P)>N(P)
o Pl = [Pl
e P =P

Proof. (ii = i). Suppose; c Y, = P,(H) c P,(H). We want show thak,P, = P,P, = P,. For everyx € H, we
haveP;x € Y;. HenceP,x € Y, by (ii.) P,(P;x) = P,x = P,P, = P, = (P,P,)* = P,"P," = P,P, = P,P, = P,. SinceP,

is self-adjoint.ThereforeP, = P,P, = P;.
(i = iv). Supposé, P, = P, P, = P,. We want show thdtP, x|| = ||P,x|| for allx € H
= (P;x,x) < ||x]|?, sinceP,x = x
= ||Pyx||? < ||x||?, forallx € H
= (1Pl llx]I? < llxII?, lIx]l # 0. We have|P,|| < 1 by (1)(Px,x) = ||Px||?
= ||Pyx|| = [P Poxl| = [Py I[IIPox || = || Pl
Therefore]| P x|| = ||Pyx||

(iv = v). Supposd|P,x|| = ||P,x]|. We want show thal, = P,. From(Px,x) = ||Px||? and (iv.) in present

theorem we have for all € H. (P, x, x) = ||Pyx||? = ||P,x||? = (P,x, x)
Therefore P, = P,by definition of positive operators.

(v.= iii. )SupposeP; = P,. We want show tha¥"(P,) o NV (P,). Letx € NV (P,) = P,x = 0 by (iii.) sect. 2 and
(v.) in the present theorefiP;x||? = (P;x,x) < (P,x,x) = (0,x) = 0. Hence,P,x = 0,x € N'(P,). Therefore, V' (P;)
DN(P,). m

4.2.2. Theorem
LetP; & P, be Projections on a Hilbert spageThen
* The difference® = P, — P, is a projection if and only if; c Y, whereY; = P;(H).
 If P =P, — P, is aprojectionP projects H ontd’, whereY is the orthogonal complement ijfin Y,.

Proof.(=) Suppose thak = P, — P; is a projection. We want to show thatc Y,. If P = P, — P, is a projection.
P=P*=>Pp,—P, =(P,—P,)>=P,>—P,P, — PP, + P,°.
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P, + P,P, = 2P, *

by theorem (2.2) (i.). Multiply both sides By we have:
P,P,P, + P,P, = 2P,P,

P,P, + P,P,P, = 2 P,P,

HenceP,P, P, = P,P,,P,P, P, = PP, and by ¢)

Py = PP, = P, #x

ThereforeY, c Y,.

(<) Suppos&, c Y,, whereY; = Pj(H) = P* = (P, — P,)? = P, — P,P, — PP, + P,” = P, — P, . Therefore,
P is idempotent= P* = (P, — P, )" = P, — P," = P, — P, . ThereforeP is self-adjoint.

-~ P is projection.

(b) Y = P(H)consists of all vectors of the form

(8)Y =Px=P,x—Px forallx eH

SinceP,P; = PP, = P, implies Y; Cc Y,

P,y = P,’x — P,Pix = P,x —Pix =y

This show that g Y,, also from (8) and (1)

P,y = P,P,x — P,’x = Pix —P;x =0

=>Py=0

yEN(P) =Y

Togethery € V where V =Y, n Y4, since the projection of H onig‘isI — P;, everyv € V
is the form

Qv=>U=-P)+ ¥, (02 €Y2)

Using againp, P, = P,, we obtain from (9), sinc®,y, = y,
Pv=(P,—P)(I—P)y,

= (P, — PP, — P, + P,%)y,

= (P, — PP, — P, + Py, =(P, — Py,

=Py, =Py, =y,—Piy, = v

~ Pv = v sothatv € Y, sincev € V was arbitrary

~Y2av
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ZY=PH)=V=Y,nY
4.2.3. Theorem
Let B, is a monotone increasing sequence of proje@jatefined on a Hilbert Spadé Then

(B, is strongly operator convergent, SRy — Px for everyx € H, and the limit operatoP is a projection

defined orH.
e P projectsH onto
-« PUH) = U Bi(H)
e P has the null space
N(P) = Na=1 N (P)

Proof a) Letm < n, by assumptio®,, = B,, so that we havg,(H) c B,(H) andP, — B, is projection. Hence

for every fixedx € H, we obtain by 2.1.2
”an - meHZ = ”(Pn - Pm)xllz = ((Pn - Pm)xﬁx) = ”anllz - ”mellz-

Now ||B,ll <1 by 3.1.2, so thaf|Bx|l < |lx|| for all n. Hence, (||B,x]]) is bounded a sequence of
numberg(||B,x||)is also monotone by 3.2.1. Sii#g)is monotone. Hencém,,_,, B,x — Px is converges. Sindg, x) is

Cauchy.
1Bux — Bpx|l = |(By — Bp)xll < 11, — Byl
= lim,,_,, B,x = Px, sinceH is complete.
The linearity ofP.
P(ax + By) = lim,,_,o, B,(ax + By)
= lim,,_,, (B,ax + B,By)
= alim,_,, B,x + flim, . P,y
= aPx + Py
= [1Px|l < 1P Mxll = 1Box]l < N|B NIl
= [|Px|l < lIx]|
= |Ip. |l < llx|l. ThereforB,is bounded,

(Byx,x) = (x, Byx) = {x, Bx) , therefore P, is self-ad joint, and

(P%x,x) = (P,x, P,x) = {x, P,x) = {(P,x, x), henceP, is projection

b). We determin®(H). Letm < n. ThenB,, = B,, that isB, — B, = 0 and{(B, — B,)x,x) = 0. The continuity

of inner product

limn—wo((Pn - Pm)X,X) = limn—wo(xv (Pn - Pm)x)
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= lim,_, e, {x, (P — By)x)

“ (P =Py)x,x) 2 0.

That isB,, = P and 3.2.1 yield#,,(H) c P(H) for everym. Henceu B,,(H) c P(H). Furthermore, for evem
and for every € H, we havep,,x € B, (H) cU B,,(H). SinceP,,x — Px, Px € U P,,(H). HenceP(H) c U p,,,(H)

U Pn(H) © P(H) € U Py (H)

=>PH)=N(I-P)={0}

= P(H) = {0}is closed

& P(H) = Uy Pu(H)

c). We determinev (P)

N(P) = P(H)* c P,(H)*for all n. SinceP(H) > B,(H) by part (b). Henc&/ (P) cn P,(H) =n N (B,)

= N(P) cn N (B,) (@)

On other hand, it e n NV (B,), thenx € N (B,) for alln. So thatP,x = 0 and B,x — Px = Px = 0. That
isx € NV (P). Sincex € N (B,) was arbitrary.

NN (PR) c N(P) (2)
By combining (1) and (2) we gets
N(P) = Nz N (B)

Example 6

Let P:C® - C3 be the linear operator defined Byx,y,z) = (x,v,0),V x,y,z € C3. ThenP is orthogonal

projection.
Solution
SinceC? is finite dimensionaP € B(C3) and clealy P? = P.

Follows from(P(x,y,z), (u,v,w)) = xu + yv = ((x,y,z), P(u,v,w)). ThenP is self-adjoint. Therefor® is

projection. Orthogonal projection &fhasimp = {(x,y,0): x,y € C} orthogonal projectio® matrix representation:

1 00
T=10 1 O0f
0 00

In generally an x n diagonal matrix whose diagonal element either 1 is the matrix of an orthogonal

projectionB(C3).

5. SPECTRAL FAMILY
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5.1.1 Definition

A one-parameter family of projection is called spaicfamily. Spectral family can be obtained frohe tfinite
dimension case as follows. LBtH — H be a self-adjoint linear operator on a unitarycegh = C". ThenT is bounded
and we may choose a basis fband represerft by a Hermitian matrix which we denote simplyhyThe spectrum of the
operator consists of the eigenvalues of that mattiich are real. For simplicity let us assume titet matrixT” hasn
different eigenvaluegd; < 1, < 13 < -+ < 1,. Then theorem 1.1.1(6) implies thAthas an orthonormal set af
eigenvectors, x, ... x,, wherex; corresponding % and we write these vectors as column vectors. dliasis foH, so

that everyx € H has a unique representation
X = Z?=1 YiXi v = (%) = xTx_j (1)

In (1) we obtain the second formula from the fose by taking the inner proddetx,), wherex,is fixed and
using the orthonormality. The essential fact in {d)thatx; is an eigen vectors @f, so that we havEx; = 4;x;,

consequently, if we applfy to (1) we simply obtain
Tx = Yiz1 A7jx; (2)
Looking at (1) more closely, we see that we caimeéedn operator
P:H — H 3)

x » yix; = pjx = y;x; = (x,x;)x;.P; is the projection (orthogonal projection) ifonto the eigenspace of

corresponding td;. Formula (1) can now be written,
x =Y, Pyx (4)
Hence/ = Y’_, P;. Wherel is identity operator ofl. Formula (2) becomes
Tx = Yiq APx (5)

HenceT = }7j_, 4;P;. This is representation @fin terms of projection. Instead of the projectRnp,, ..., B,
themselves we take sums of such projection. Mageigely, for any real we define,

EAZZAJ-EAP]' (AER) (6)

HenceE,;? = E;, moreovelE, is symmetric operator. This is one-operator fanuly projection,A being the
parameter. From (6) we see that for arthe operatok, is the projection off onto the subspadg spanned by all those

x; for which; = A it follows thatV; c V, (A = ). As A traverseR in the positive send grows from 0 td. The growth

occurring at the eigenvalues®fandE; remaining unchanged fdrin any interval that is free of eigenvalues.
Properties of E;

e EE,=EE, =E,ifi<u

e E;=0,ifA<)

. E=1if122,
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* Eyvo = limu—>l+o Ep. =E
Definition

A real spectral family (or real decomposition ujity a one parameter fami§/= (E;), 1 € R of projectionk;

defined on Hilbert spack (of any dimension) which depends on a real paramieand such that,
EySE, (7)

Hence L E, = E Ey = Ej, A<y

liml_,_oo EAX =0 (83)
limy 0 E3x = x (8b)
Ejvox =1lim,_;,, E,x = Eyx (Vx € H) 9)

We see from the definition that a real spectraliffiaroan be regarded as a mappRg— B(H,H), A — Ej;
Strongly operator continuous from right. To edoh R there is corresponds a project®pe B(H, H), whereB(H, H) is
the space of all bounded linear operators fibimto H. We assume, for simplicity, that the eigenvaltigd,, ..., 4,, of T

are all different and; < 1,,< -+ < 4,,. Then we have,
EAI = Pl
E/lz = Pl + P2

EA3:P1+P2+P3

Ely =Py + P, + -+ P,
Hence, conversely ;

P = E/h

Py =EXN —EAi_4 j=2,..,n

SinceE; remains the same fdrin the intervaﬂlj_l,lj), this can be writte®) = EA; — EA;_,. Now equation (4)

becomesc = ¥, Pix = ¥, (EA; — EA;_o)x and equation (5) becomes
Tx = Y}y AiPx = X7 4 (EA; — EAj_o)x.
If we drop thex and writeSE; = E; — E;_. SinceE, = ¥, <3 P;. We arrive at

This is the spectral representation of the selbiatljinear operatof with eigenvaluegd; < 1,, < -+ < A,, on that

n-dimensional Hilbert spadé. The representation shows that for

anyx,y € H,
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(Tx,y) = Xj-14; (6Eyx,y) (11)
We note that this may be written as a Riemanntjgseintegral

(Tx,9) = [772dW(A) oo e e e (12).

Wherew(1) = (E;x, y).
5.2 Spectral Family of a Bounded Self-Adjiont LineaOperator

To define Spectral familie) we need the operatdh, = T — Al from resolvent theoreT;x|| = c||x||. Then

1
B,* = Ty, the positive square root §f* denote byB;*. B; = (T;?)? = |T;| and operatof,* = 1s,+rpwhich is called
positive part off,. The spectral family of T is then defined b§ = (E;), A € R, whereE, is the projection ofl onto the

null spaceN (T; )of T; . We proceed step wise and consider at first theatper
B = (TZ)%(Positive square root af?),
T* = 2(s+7) (Positive part of),
T~ = J@-n(Negative part of),
and the projection dff onto the null space @ which we denote by.
E:H—V=N(T*) =ker (WU -T)*
T=T+-T" =>%(B+T)—%(B—T) =Tt T~
= B4 T—sB+-T=T"—T"
= T =T* — T~ by subtraction
B=T+*+T =T +T" =%(B+T) + 11,
=B+ T+5B—T.
=3B
= B =T* + T~ by addition.
5.2.1 Lemma
The operators just defined have the following prips
e B,T*andTare bounded and self-adjoint
e B,T*andT~ commute with every bounded linear operator thabmmute with; in particular
e BT=TBT'T=TT*T"T=TT"T*T-=T"T*

» E commutes with every bounded self-adjoint lineagrapor tha” commute with; in particular
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. ET =TE EB =BE
*  Furthermore
e TYT™ =0T Tt=0
e TYE=ET*=0T E=ET =T~
e« TE=-T TU—-E)=T*
e TY*Z0T 20
Proof. a
+ Claim 1B is bounded
Proof of Claim 1
IBII? =(B,B) <(T*+T~,T*+T")
=TT +T*T +T Tt*+T T~
ST+ TYT-+TTH+||IT"|?
= [IT*I1* + 2Re(T*, T7) + IT7 I
< WTHIZ + 2KT T + TP
< AT+ T2
IBIL < IT*N+ T
~ B is bounded= continuous. Sincg = 1
Claim 2B is self-adjoint
Proof of Claim 2 SinceB=T" + T~
(Bx,y) =((T" +T)x,y) = {x,(T* +T7)"y)
=(x,B"y)
= B = B"*
-~ B is self-adjoint
» Supposd’'S = ST. ThenT?2S = TST = ST? andBS = SB follows from theorem (positive square ro@t)S =
%(BS +TS) = %(SB +ST)=ST* .  Therefore, T*S=ST* T S=ST"=>T"S= %(BS —TS) =
%(SB — ST) = ST~.
Then show that T*T~ =T~ T".

T+~ = %(BS + TS).%(BS —TS) = %(573 - ST).%(SB +ST)=T"T*=>T*T~ =TT+,
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e For everyx€ Hwehavey =Ex €Y = N(T*) = Ker(T*). Hence T*y = 0and ST*Y = S0 =0. From
TS=ST and (b) we have B =T*Sand T*SEx =T*Sy =ST*y =50=0= T*SEx = 0, hence SEx €
Y.since E projects H onto Y. We thus hav&SEx = SEx. For everyx € H.that iSESE = SE. A projection is
self adjoint.ES = E*S* = (SE)* = (ESE)* = E*S*E* = ESE = SE. ThereforeES = SE.

We prove(3) — (6)

Proof (3)

1
From B = (T2)2 = B2 =T2,and also BT =TB by (6) Hence T*T- =T T*= %(B - T).%(B +T) =
%(B2 +BT—-TB—-T¥) =0 T*T- =T T*=0
Proof (4)

LetT*Ex = 0V x € H,sinceT™ is self adjoint. We havET*x = T*Ex = 0 by (3) and (c¢). ThereforeET* =
T*E = 0. FurthermoreT*T " x = 0 by (8),sothat T"x € N(T*) = ker(T*). HenceET x =T Ex=T xVx € H.
ThereforeET- =T E =T~

Proof (5)

From a, b and (4), sin®=T*—-T"we haveTE = (T*— T )E=TYE-T"E=-T"E.TE =-T~, since
T~is self adjoint. Again by (4§(I —E) =T —TE=T + T~ =T". ThereforeT(I — E) =T".

Proof (11) By (4) and (b)T~ =ET~ + ET* =E(T"+T*%) = EB 2 0, sinceE andB are self-adjoint and = 0 and

B = 0 by definition of positive operators.
T*=B—-T" =B—-EB=(U-E)B=20
~TY=0,sincel —E=Z0and B2 0

In second step instead of we considerT; =T — A1

1
Instead ofB,T*,T~ andE we now have to take; = (T;%)?, Tyt = %(B,l +T). T, = %(B,l —-T,) and
projection E;: H - Y, = N (T ).
5.2.2. Lemma

The previous lemma remains true if we repldG®,T*, T, E by Ty, B,, T3", Ty, E; Respectively, where

Ais real, moreover, for any real. A, u, v, T following operator all commute: Ty, B, Tu+' T, ,E;

5.2.1. Theorem

LetT:H — H is a bounded self-adjoint linear operator on a demHilbert space H. Furthermore, let
E; (A is real) be the projection of H onto the null spiice NV (T;,") of the positive parfy* of T, = T — Al.thene =

(E3) e is spectral family on the intervii, M] c R, wherem andM are given byl) see section 3.2.

Proof. We shall provel < u = E; < E,
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A<m = E;=0.
A=2M = E =1
u—>1+0 = E;x > Epx.
In the proof we use part @Bmma 5.2.2 formulated forT,, T, T,* etcinstead ofl, T+ etc
T,'T,” =0
T,E, =-T, ThW( —E) =T,"T,E, = -T,”
T,"20T, 20T, 20T,” 20
Proof (7)

Let A<u we haveT, =T)" —T,” =T," becuase =T~ =0. HenceT," =T, 2T, —T,=@u—-DIZ0.

T,* —T,is self-adjiont and commutes with,* by Lemma of 5.2.2 and,* =Z 0. Theorem 3.3.7,*(T;* - T,) =

1\

TN (T, = T,* +T,7) 2 0. Here T,*T,” = 0. Hencel, *T; " 2 T,** vx € H. (T, Ty*x,x) 2 (T, *x, %) = || T, *x||”
0. SinceT,, *is self-adjoint. This show th&@}*x = 0 = T,*x = 0. HenceN' (T;*) ¢ N (T,*).

Ey <E,forA<u
Proof (8)

Suppose noE; #0 = E;z+ 0 for3z, we setx = E;z. ThenEyx = E;*z = E;z=x, we may assume

llx|l = 1.

(THEpx, x) = (Tyx,x) = (Tx,x) — A Z infjz=1(TX,X) — 1 =m — 1> 0, contradiction the fact thaf >m .

TyE, = =T, £ 0.
T,E; = 0 = E;=0
LA<m =3 E =0

Proof (9)

Supposel > M but E; #1 so thatl —E; # 0. Then (I — E;)x = x for somex of norm 1. Hence(T;(I —
Epx, x) =(Tyx,x) = (Tx,x) — 1 < sup{(TX,%X) — 1) = M — 1 < 0. Then there is contradiction.

T(I—E)=(M")20
“A=M > E=1I
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