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ABSTRACT  

The spectral theory mainly deals with a systemic study of inverse operators, their general properties and their 

relation to the original operators. 

Operators on Hilbert space is a basis for a comprehensive study of the spectral theory. In particular, the hermitian 

or self-adjoint operators are very important in many applications. In this peper, we have generalized this idea by showing 

that the spectrum of a self-adjoint operator on a Hilbert space also consists entirely of real values. 
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1. INTRODUCTION  

While solving the system of linear algebraic equations, differential equations or integral equations, we come 

across the problem related to inverse operation. Spectral theory is concerned with such inverse problem. 

In chapter one we discuss the preliminary concepts which are frequently used in the project work. In chapter Two 

we discuss the spectral theory of bounded self-adjoint linear operator and in chapter Three we discuss Projection operators. 

The definition of projection is suitable for spectral family. Projections are always positive operators. 

In Chapter Four we discuss spectral family. The spectral family of a bounded self-adjoint linear operator at points 

of the resolvent set, at eigen values and at the point of continuous spectrum. 

The spectral projection are the given, as in the bounded case, by defining �� to be the orthogonal projection on the 

null space of �� − ���	 for all real �. If the two sets are vector spaces, we can introduce the concept of a linear operator, if 

the sets are normed spaces, we can construct a theory of bounded linear operators on such spaces. Operators that map 

members of a specified space into the real or complex numbers are called functional. We shall also discuss the Hilbert-

adjoint operators as well as the self-adjoint, unitary and normal operators. Finally, we shall look at the spectral family of 

the Hermitian (self-adjoint) operators which is an important aspect of functional analysis. 

2. PRELIMINARY CONCEPT 

2.1 Basic Definition 

Norm: Let � be a vector space over a field �. Then a mapping ‖. ‖: � → �0, ∞� � is said to be a norm on � if for 

each �, � ∈ �, � ∈ � 

• ‖�‖ ≥ 0 ��� ‖�‖ = 0 �� ���  �!� �� � = 0 �" #�$�%& �&����$&�&##� 

• ‖��‖ = |�|‖�‖ �( ) *&�&�$�� 

• ‖� + �‖ ≤ ‖�‖ + ‖�‖ � $-���*!& ��&./�!�$��.  
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If norm is defined on a vector space �, then �is said to be a normed space. 

Linear Functional: A linear functional on Hilbert space ( is a linear map from ( $  ℂ. That is 1: ( → ℂ. 
Bounded Linear Functional: A linear functional 1 is bounded or Continuous, if there exists a constant 2 such 

that  

 |1���| ≤ 2‖�‖  
The norm of a bounded linear functional is  

 ‖1‖ = #/"‖3‖45|1���| 
If  � ∈ (, $ℎ&� 17��� = 〈�, �〉is a bounded linear functional on (, with :17: = ‖�‖ 

Continuous Operator 

An operator  �  from a normed space ; into another normed space <  is continuous at a 

point  � ∈ =��� �� � - ��� > > 0 $ℎ&-& �# � @ > 0, #/Aℎ $ℎ�$ ‖�� − ��‖ < > � - �!! � ∈ =��� Cℎ&�&%&- ‖� − �‖ <
@ then � is continuous, if its continuous at all points of =���. 

Let � be a vector space over � and let 〈. , . 〉: � × � → �, where for all �, �, E ∈ � 

• 〈� + �, E〉 = 〈�, E〉 + 〈�, E〉 �!��&�-�$�� 

• 〈F�, �〉 = F〈�, �〉 �( ) *&�&�$�� 

• 〈�, �〉 = 〈�, �〉 �A �G/*�$& #�))&$-�� 

• 〈�, �〉 ≥ 0 ��� 〈�, �〉 = 0 ⇔ � = 0 �" #�$�%& �&����$&�&##�. 
Then the pair ��, 〈. , . 〉� is said to be an inner product space. Hilbert space is a complete inner product space. If 

�: � → � is a linear operator on linear space �, then � ∈ � is called eigen value of �, if there exist an non- zero x∈ � then  

�� = ��  

Resolvent Set: Let ( be a Hilbert space and let �: =��� → ( be a linear operator with domain =��� ⊆ (. For 

any � ∈ ℂ, we define the operator ��= �� − �, then � is said to be a regular value if  J� is inverse operator. That is �is 

regular if provided, 

•  J�exists 

•  J� is a bounded linear operator; 

•  J� is defined on a dense subspace of ( 

The resolvent set of � is the set of all regular values of � 

K�L)=M� ∈ ℂ: � �# � -&*/!�- %�!/&  � �N 
Spectrum. The set O��� = ℂ − K�L) 

The spectrum of an operator T is usually divided into three disjoint unions. 
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• Point spectrum OP���. 

• Continuous spectrumOQ���. 

• Residual spectrumOR���. 

Where 

 OP��� = M� ∈�O���: 2&-��� − �� ≠ M0NN  
OQ��� = M� ∈ O���: ��� − ��T5 �# �&�#&!� �&���&� U/$ � $ U /��&�N  
OR��� = M� ∈ O���: J��� − �� �# � $ �&�#& �� (N  
Elements of  OP��� are called eigenvalues. 

Orthogonality  

Two vectors � ��� � in inner product space are said to be orthogonal if 〈�, �〉 = 0. 
Orthonormality  

The set containing those vectors �, � #/Aℎ $ℎ�$ 〈�, �〉 = 0 ��� ‖�‖=1 is said to be orthonormal set. 

Orthogonal Complement 

For non-empty subset V of Hilbert space we define the orthogonal complement to V, denoted by VW. 
VW = M� ∈ (: 〈�, �〉 = 0 � - �!! � ∈ VN  

Convergence of Sequence of Operator  

Let � ��� X be normed space. A Sequence ��Y�  �  "&-�$ -# �Y ∈ Z��, X� is said to be:  

• Uniformly Operator Convergent: If ��Y� converges in the norm of Z��, X� to� ∈ Z��, X� 

i.e ‖�Y − �‖ → [  
• Strongly Operator Convergent: If ��Y�� A �%&-*&# #$- �*!� �� X � - &%&-� � ∈ � 

‖�Y� − ��‖ → [   
Unitary Operator : A bounded linear operator �: ( → ( on Hilbert space H is said to be unitary if � is bijective 

and  

 �∗ = �T5  

Normal Operator: A bounded linear operator �: ( → ( on a Hilbert space is said to be normal 

if  ��∗ = �∗� 

 

 

2.2. BASIC THEOREMS 
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Theorem (Cauchy-Schwarz Inequality):- If � is inner product space then 

|〈�, �〉| ≤ 〈�, �〉]
^〈�. �〉]

^  

 This equality holds if and only if � ��� � �-& !��&�-!� �&"&�&�$.  
Proof. Continuity of Inner Product -If in an inner product �Y → � and �Y → �. Then 〈�Y , �Y〉 → 〈�, �〉 
Reiszre-Presentation Theorem: Let 1 be a continuous linear functional on a Hilbert space(. Then there is a 

unique E ∈ ( such that 1��� = 〈�, E〉 � - �!! � ∈ ( 

Bounded Inverse Theorem-Let �: ; → < be a bounded, linear and bijective operator from Banach space ; into 

Banach space < then the inverse operator �T5: < → ; is also bounded. 

Principle of Uniform Boundness: Let��Y� be sequence of bounded, linear operator �Y: � → X from a Banach 

space _ into a normed space ` such that is bounded for every � ∈ �, #�� 

‖�Y�‖ ≤ ab � = 1,2  

Where ab is real number, then the sequence of the norms ‖�Y‖is bounded, that is there is a a such that‖�Y‖ ≤ a 

Weierstress Approximation Theorem (Polynomial) - The set of all polynomials W with real coefficient is 

dense in real space a��, Ue. Hence for every � ∈ a��, Ue and given > > 0 there exist a polynomial f such that |��$� −
f�$�| < > � - �!! $ ∈ a��, Ue 

Proof in [1], [2] and [3] 

3. SPECTRAL THEORY OF BOUNDED SELF-ADJOINT LINEAR O PERATORS 

3.1. Spectral Properties of Bounded Self- Adjoint Linear Operators  

3.1.1. Definition 

Let(5��� (g  be complex Hilbert spaces and T:(5 → (g  bounded linear operator. Then the Hilbert-adjoint  

operator �∗: (g → (5 defined to be the operator satisfying. 

〈��, �〉 = 〈�, �∗�〉 � - �!! �, � ∈ (  

3.1.1. Theorem 

If  �(5 = (g = (�, then �∗ exists as bounded linear operator of norm  

 ∥ �∗ ∥=∥ � ∥ and is unique. 

Proof. Let ( be complex Hilbert spaces and �∗ be operator we need to show: 

• �∗ U /��&�. 
•  �∗ !��&�-  "&-�$ -  
•  �∗ �# /��./&.  

Take �i ( ��� � ∈ Z�(� . We define a bounded linear functional�j � ( U� �j��� = 〈��, �〉 ∀�, � ∈ ( ⇒ Xj 
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bounded since ∣ �j��� ∣=∣ 〈��, �〉 ∣ ≤ ∥ �� ∥∥ � ∥. 

By Riesz-representation theorem there is unique E ∈ ( #/Aℎ $ℎ�$ �j���  = 〈�, E〉 � - �!! � ∈ (.here weobserve 

that � and E must have a certain relation so we can define an operator �∗� = E satisfying〈��, �〉  = 〈�, �∗�〉 � - �!! � ∈ (. 

Now let’s see L∗ Linear . Let �5 , �g ∈ ( ��� F, o ∈ a, #  ∀� ∈ ( 

〈�, �∗�F�5 + o�g�〉  = 〈��, F�5 + o�g〉  = 〈��, F�5〉  + 〈��, o�g〉   
= F〈��, �5〉  + o〈��, �g〉 = 〈�, F�∗�5〉  + 〈�, o�∗�g〉  =  〈�, F�∗�5 + o�∗�g〉   
⇒ �∗�F�5 + o�g� = F�∗�5 + o�∗�g. 

 ∴  L∗ qrstuv wxtvuywv.  
We want show that the uniqueness of∥ L∗ ∥=∥ L ∥. Let � ∈ ( 

∥ �∗� ∥g = 〈�∗�, �∗�〉  =  〈�, ��∗�〉  ≤  ‖�‖‖��∗�‖  ≤  ‖�‖‖�‖‖�∗�‖  

⇒ ‖�∗�‖ ≤ ‖�‖‖�‖, This shows that �∗ is bounded 

⇒ ‖�∗‖ ≤ ‖�‖                                                                                                                                                        (1) 

Similarly, let� ∈ ( 

‖��‖g = 〈��, ��〉  = 〈�, �∗��〉 ≤ ‖�‖‖�∗��‖ ≤ ‖�‖‖�∗‖‖��‖  ⇒ ‖��‖ ≤ ‖�‖‖�∗‖ 

⇒∥ � ∥≤∥ �∗ ∥                                                                                                                                                        (2) 

Combining(1) and (2) we get  

∥ �∗ ∥=∥ � ∥. ∎  

3.1.2. Definition 

A bounded linear operator �: ( → ( on acomplex Hilbert space H is said to be self-adjoint or hermitian, if 

� = �∗. Equivalently, a bounded linear operator � is said to be self-adjoint, if 〈��, �〉  = 〈�, ��〉 ∀�, � ∈ (. 
3.1.2. Theorem 

Let T:( → ( be a bounded linear operator on a Hilbert space H. Then 

• If T is self-adjoint, then 〈��, �〉 is real for all � ∈ ( 

• If H is complex and 〈��, �〉 is real for all � ∈ (, then the operator T is self-adjoint 

Proof. 1. If T is self-adjoint, then for all � 

〈��, �〉 = 〈�, ��〉                                       (1) 

 By definition 〈��, �〉 = 〈�, �∗�〉 and since T is self-adjoint, we have: 

〈��, �〉 = 〈�, ��〉                            (2) 

Combining equation (1) and (2) gives 



112                                                                                                                                                                     Gezahegn Anberber Tadesse 
  

 
NAAS Rating: 3.00- Articles can be sent to editor@impactjournals.us 

 

〈��, �〉 = 〈��, �〉  
Hence 〈��, �〉is equal to its complex conjugate which implies that it is real. If 〈��, �〉is real for all � ∈ (, then: 

〈��, �〉 = 〈��, �〉 = 〈�, �∗�〉 = 〈�∗�, �〉 . Hence 0 = 〈��, �〉 − 〈�∗�, �〉 = 〈�� − �∗��, �〉 . Thus, � − �∗ = 0 . 

Therefore � = �∗ 

Remark 1: If � Self-adjoint or unitary, then � is normal; in general the converse is not true. 

Example 1: If �: ( → ( is identity operator, then � = 2�� is normal, since �∗ = −2��, so that ��∗ = �∗� = 4� 

but � ≠ �∗ and �∗ ≠ �T5 = T5
g �� 

3.1.3. Theorem 

Let �: ( → ( be a bounded self-adjoint linear operator on complex Hilbert space H. Then: 

• All the eigenvalue of � are real. 

• Eigenvectors corresponding to distinct eigenvalue of � are mutually orthogonal.  

Proof. a): Let � be any eigenvalue of � and � a corresponding eigenvectors. Then � ≠ 0 & �� = �� ⟹ �〈�, ��〉� =
〈����, �〉 = 〈��,���〉 = 〈�, �∗ ���〉 = 〈�, ���〉� = 〈�, ���〉� = � 〈�, ��〉,� using the self-adjointness of T. 

⇒  �〈���, �〉 − �〈�, ��〉� = 0  

 ⟹ ~� − ��〈�, ��〉� = 0. Here 〈�, ��〉� = ‖�‖g ≠ 0 

 ∴  � =  � 

• Let � & � be eigenvalues of T and let � ��� � be corresponding eigenvectors. Then �� = �� and �� = �� since 

T is self-adjiont and � real. 

 �〈�, �〉 = 〈����, �〉 = 〈��,���〉 = 〈�, �∗ ���〉 = 〈�, ���〉� = 〈���, ��〉 = �〈�, �〉 
 ⇒ �〈���, �〉 − �〈�, ��〉� = 0 

⟹ �� − ��〈�, ��〉� = 0, � ≠ �  

 ∴ 〈�, ��〉� = 0 �. & � ⊥ � 

Example 4: � = � 2 1 − �1 + � 1 � 

Spectrum  � ��� = M0,3N distinct real numbers with eigenvectors. 

�5 = �−1 + �2 �  ��� �g = �1 − �1 �  -&#"&A$�%&!�   

Finally 〈�5, �g〉 = �5��g = �−1 + � 2e �1 + �1 � = 0. So the eigenvectors are orthogonal. 

 

3.1.4. Theorem 
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Let �: ( → ( be a bounded self –adjoint linear operator on a complex Hilbert space(. Then a number � belongs 

to the resolvent set ���� of � if and only if there exists a A > 0 such that for ever �i( 

‖���‖ ≥ A‖�‖ �� = � − ��  

Proof: ⟹� Suppose that �i ���� , J� = �T5� :  ( → (  exists and is bounded set ‖J�‖ = 2  where 2 > 0, since 

J� ≠ 0 now I=J���, so that for every � ∈ ( 

⟹ ��� = �, ⇒ � = �T5�y, since J� = �T5� 

⟹ � = J����  

⟹ ‖�‖ = ‖J����‖ ≤ ‖J�‖‖���‖ = 2‖���‖  

⟹ ‖�‖ ≤ 2‖���‖  

⟹ ‖���‖ ≥ 5
� ‖�‖, where A = 5

� 

∴  ‖���‖ ≥ A‖�‖  

3.1.5. Theorem 

The spectrum O��� of a bounded self-adjoint linear operator �: ( → ( on a complex Hilbert space ( is real. 

Proof: By theorem 2.1.5 we show that a � = F + �o �F, o -&�!�  with o ≠ 0  which belongs to ����  so that 

O��� ⊂ ℝ.  
〈���, �〉 = 〈��, �〉 − �〈�, �〉 � - �!! � ∈ (                                                                                                            (1) 

Since 〈��, �〉 ��� 〈�, �〉 �-& -&�! 
〈���, �〉 = 〈��, �〉 − �〈�, �〉, ℎ&-& � =  F − �o                                                                                                       (2) 

Subtract equation (2) from (1) 

〈���, �〉 - 〈���, �〉 = ~� − ��〈�, �〉 = 2�o‖�‖g 

So that 

 -2iIm〈���, �〉 = 2�o‖�‖g 

-Im〈���, �〉 = o‖�‖g 

|o|‖�‖g = |Im〈���, �〉| ≤ ‖���‖‖�‖  

|o|‖�‖ ≤ ‖���‖, � - ‖�‖ ≠ 0.   
If  o ≠ 0, $ℎ&� � ∈  ����. Hence for � ∈ O��� we must have o = 0. i.e � is real 

 

 

3.2 Further Spectral Properties of Bounded Self-Adjoint Linear Operators 
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3.2.1 Theorem 

The spectrum O��� of a bounded self-adjoint linear operator �: ( → ( on a complex Hilbert space H lies in the 

closed interval [m,M] on the real axis, where 

� = rs�‖�‖4�〈L�, �〉 � = ��x‖�‖4�〈L�, �〉  
Proof: O��� lies on the real axis. We show that any real � = � + A C�$ℎ A > 0 belongs to the resolvent set ����. 

For every � ≠ 0 ��� % = ‖�‖T5� C& ℎ�%& � = ‖�‖% ��� 

〈��, �〉 = ‖�‖g〈�%, %〉 ≤ ‖�‖g#/"‖�‖� 45〈�%,� %�〉 = 〈�, �〉�  

Hence −〈��, �〉 ≥ −〈�, �〉� and by Cauchy-Schwartz inequality we obtain  

‖���‖‖�‖ ≥ −〈���, �〉 = −〈��, �〉 + �〈�, �〉 = −〈�, �〉� + �〈�, �〉  
≥ �−� + ��〈�, �〉 =  a‖�‖g  

⟹ ‖���‖‖�‖ ≥ a‖�‖g, ‖�‖ ≠ 0  

‖���‖ ≥ a‖�‖  

∴ � ∈ ����  

3.2.2 Theorem 

For any bounded self-adjoint linear operator T on a complex Hilbert space H we have:  

‖�‖ = )���|)|, |�|� = #/"‖3‖45|〈��, �〉|  
Proof. By the Cauchy-Schwarz inequality  

#/"‖3‖45|〈��, �〉| ≤ #/"‖3‖45‖��‖‖�‖ = ‖�‖, where� = #/"‖3‖45|〈��, �〉|. Hence, � ≤ ‖�‖ 

We want show ‖�‖ ≤ �.If�E = 0, then0 ≤ �‖E‖g ⟹ ‖�E‖ ≤ � ∀E ∈ (, ‖E‖ = 1. Otherwise �E ≠ 0 for any E 

of norm 1. % = ‖�E‖]
^E ��� C = ‖�E‖T]

^�E. Now set �5=v+w and �g = % − C. T is self-adjoint 

〈��5, �5〉 − 〈��g, �g〉 = 2�〈�%, C〉 + 〈�C, %〉�  

= 2�〈�E, �E〉 + 〈�gE, E〉�  

= 2�〈�E, �E〉 + 〈�E, �E〉�  

= 2�2〈�E, �E〉� = 4〈�E, �E〉 = 4‖�E‖g                                                                                                                  (1) 

Now for every � ≠ 0 ��� � = ‖�‖T5� C& ℎ�%& � = ‖�‖� ��� 

|〈��, �〉| = ‖�‖g|〈��, �〉| ≤ ‖�‖g#/"‖3�‖45|〈��,� ��〉| = �‖�‖g, so that by the triangle inequality. 

|〈��5, �5〉 − 〈��g , �g〉| ≤ |〈��5, �5〉| + |〈��g, �g〉|  
≤ ��‖�5‖g + ‖�g‖g�  ≤ 2��‖%‖g + ‖C‖g� = 4�‖�E‖                                                                                      (2) 

Combining (1) and (2) we get  
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4‖�E‖g ≤ 4�‖�E‖, ‖�E‖ ≠ 0  

‖�E‖ ≤ � U� $�2��* supremum  %&- �!! E  � � -) 1. ‖�‖ ≤ � ��� � ≤ ‖�‖  

‖�‖ = � = )���|)|, |�|� = #/"‖3‖45|〈��, �〉| ∎   
3.2.3 Theorem. 

The residual spectrum OR��� of a bounded self-adjoint linear operator �: ( → ( on a complex Hilbert space ( is 

empty 

Proof. Suppose notOR��� ≠ ∅. Let � ∈ OR���. By definition of OR���, the inverse of ��  exists but its domain 

 ��T5��  is not dense in( . Hence, by the projection theorem there is a � ≠ 0i(  which is orthogonal to ��T5�� , 

but  ��T5��is a range of ��, hence, 〈���, �〉 = 0, ∀ � ∈ (. since � is real and � self-adjoint, we obtain 〈�, ���〉 = 0 ∀ �. 

Taking � = ��� we get‖���‖g = 0, so that��� = �� − �� = 0, #��A& � ≠ 0. This shows that � is an eigenvalue of�, but 

contradicts� ∈  OR���. Therefore ��� = ∅ ∎  
3.3 Positive Operators 

In this section we can see the definition of partial order  is a binary relation “≤” over a set f which is reflexive, 

antisymmetric, and transitive i.e∀�, U, A ∈ f. We have that: 

• � ≤ � ( Reflexive)  

• �� � ≤ U ��� U ≤ � $ℎ&� � = U (Antisymmetrive) 

• �� � ≤ U ��� U ≤ A $ℎ&� � ≤ A (Transitive) 

3.3.1. Definition. 

Abounded linear operator �: ( → (  is called a positive operator if and only if �  self-adjoint and〈��, �〉 ≧
0 � - �!! � ∈ (. A bounded linear operator �: ( → ( is said to be positive, written 

� ≧ 0 �� ���  �!� �� 〈��, �〉 ≧ 0 � - �!! � ∈ (  

Remark 2: The sum of positive operators is positive. Every positive operator on a complex Hilbert space is self-

adjoint. 

The following theorem is like the familiar statement about real numbers which says that when you multiply two 

non-negative real numbers the result is a non-negative real numbers. 

3.3.1 Theorem 

Let V  and �  be a positive and self-adjoint such that V�  = �V . Then their product V�  is also self-adjoint and 

positive. 

Proof. Since �V��∗ = �∗V∗ = �V  we see that V�  is self-adjoint if and only if V� = �V . We show that V� is 

positive. This is true for � = 0. Assume it is true for any �. We consider  

 V5 = 5
‖¢‖ V, VY	5 = VY − VYg �� = 1,2,3 … … . . � (*) 
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and prove by induction such that  0 ≦ VY ≦ �  (**) 
• For � = 1 the inequality (∗∗) holds. Indeed, the assumption 0 ≦ V �)"!�&# V5 ≦ �is obtained by application of the 

Schwarz inequality ‖V�‖ ≦ ‖#‖‖�‖ 

〈V5�, �〉 = 5
‖¢‖ 〈V�, �〉 ≦ 5

‖¢‖ ‖#�‖‖�‖ ≦ ‖�‖g = 〈��, �〉  
 ⇒ V5 ≦ �.  
Suppose (∗∗) holds for any = 2 $ℎ�$ �# 0 ≦ V� ≦ �. �ℎ/#, 0 ≦ � − V� ≦ �. 

 Since V� is self-adjoint, for every� ∈ ( & � = V��, we obtain 

〈V�g�� − V���, �〉 = 〈�� − V��V��, V��〉 = 〈�� − V���, �〉 ≧ 0. 

 By definition this proves V�g�� − V�� ≧ 0. Similarly, V��� − V��g ≧ 0. 

Since V� is self-adjiont. It is clear that from remark (2) sum of positive operator is positive. 

0 ≦ V�g�� − V�� + V��� − V��g = V� − V�g = V�	5.  
Hence 0 ≦ V�	5 ��� V�	5 ≦ � � !! C# �- ) V�g ≧ 0 ��� � − V� ≧ 0  

• We now show that 〈V��, �〉 ≧ 0 � - �!! � ∈ (. Form �∗∗� we obtain successively 

V5 = V5g + Vg, Vg = Vgg + V¥, V¥ = V¥g + V¦, V¦ = V5g + Vgg + V¥g + V¦, ⋯,  
 VY = V5g + Vgg + V¥g + V¦g + ⋯ + VYg + VY	5  

Since VY	5 ≧ 0 $ℎ�# �)"!�&# 

 V5g + Vgg + V¥g + V¦g + ⋯ + VYg =  V5 − VY	5 ≦ V5  

By the definition of ≦ and self-adjiontness of V̈ ′# 

∑ :V̈ �:gŸ45 = ∑ 〈V̈ �, V̈ �〉 = ∑ 〈V̈ g�, �〉 ≦ 〈V5�, �〉Ÿ45Ÿ45   

 Since � is arbitrary, the infinite series ‖V5�‖g + ‖Vg�‖g + ⋯ 

limY→­ ∑ :V̈ �:g =Ÿ45 ‖V5�‖g. Hence limY→­ VY� = V�.~∑ V̈ gŸ45 �� = �V5 − VY	5 �� → V5� 

limY→­~∑ V̈ gŸ45 � � = limY→­�V5 − VY	5 �� → V5�. 

All the V̈ ′# commute with � since they are sums and product of V5 = ‖V‖T5V , V and � commute. Using V =
‖V‖V5, ~∑ V̈ gŸ45 �� = �V5 − VY	5 �� → V5�, � ≧ ®  and the continutity of inner product, we thus obtain for every � ∈
( ��� �̈ = V̈ � 〈V��, �〉 = ‖V‖〈�V5�, �〉  = ‖V‖ limY→­ ∑ 〈�V̈ g�, �〉Ÿ45  = ‖V‖ limY→­ ∑ 〈��̈ , �̈ 〉Ÿ45 ≧ 0 

∴ 〈V��, �〉 ≧ 0, then V� are positive. ∎ 

3.3.2. Definition 

A monotone sequence ��Y� of self-adjoint linear operators �Yon Hilbert space H is a sequence ��Y� which is either 
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monotone increasing, that is, 

 �5 ≦ �g ≦ �¥ ≦ ⋯  

 Or monotone decreasing, that is, 

 �5 ≧ �g ≧ �¥ ≧ ⋯  

The following theorem is a generalization of the familiar fact that if you have an increasing sequence of real 

numbers which is bounded above, then the sequence converges 

3.3.2. Theorem 

Let��Y� be a sequence of bounded self-adjoint linear operators on a complex Hilbert space ( such that  

 �5 ≦ �g ≦ �¥ ≦ ⋯ �Y ≦ ⋯ ≦ � �∗�.  
Where � is bounded self-adjointlinear operator on (. Suppose that any �̈  commutes with � and with every �̄ . 

Then ��Y� is strongly operator convergent ��Y� → �� � - �!! � ∈ (� and limit operator � is linear, bounded and self-

adjoint and satisfies� ≦ �. 

Proof. We consider VY = � − �Y. The sequence ~〈VYg�, �〉� converges ∀� ∈ (;�Y� → ��, where � is linear, self-

adjoint and bounded by uniform boundnees theorem 〈VYg�, �〉 = 〈VY�, VY�〉 = 〈�, VYg�〉. Therefore, VY  is self-adjoint? 

V¯g − VYV¯ = �V¯ − VY�V¯ = ��Y − �̄ ��2 − �̄ �. Let ) < �. Then �Y − �̄  and � − �̄  are positive by �∗�, since these 

operators commute, their product is positive. Hence on the left  V¯g − VYV¯ ≧ 0, $ℎ�$ �# V¯g ≧ VYV¯ � - ) < �.  
Similarly VYV¯ − VYg = VY�V¯ − VY� = �2 − �Y���Y − �̄ � ≧ 0. So that VYV¯ ≧ VYg , together  V¯g ≧ VYV¯ ≧

VYg, ) < �. By definition, using the self-adjointness of  VY 

〈V¯g�, �〉 ≧ 〈VYV¯�, �〉 ≧ 〈VYg�, �〉 = 〈VY�, VY�〉 = ‖VY�‖g ≧ 0.  (**) 
This show that ~〈VYg�, �〉� with fixed x is a monotone decreasing sequence of non-negative numbers. Hence, 

~〈VYg�, �〉� converges ∀� ∈ (. 
We show that �Y� → �� is converges. By assumption, every �Y commute withevery �̄  and with K. Hence the 

V̈j# all commute. These operators are self-adjoint, since −2〈VYV¯�, �〉 ≦ −2〈VYg�, �〉 U� �∗∗� Cℎ&-& ) < � 

‖V¯� − VY�‖g = 〈�V¯ − VY��, �V¯ − VY��〉  
 = 〈�V¯ − VY�g�, �〉  
 = 〈V¯g�, �〉 − 2〈VYV¯�, �〉 + 〈VYg�, �〉 
≦ 〈V¯g�, �〉 − 〈VYg�, �〉. 
Since (VY�) is Cauchy sequence in ( is completes. We show that � is self-adjoint because �Y is self-adjoint and 

the inner product is continuous. 

〈��, �〉 = limY→­〈�Y�, �〉 = limY→­〈�, �Y�〉 = 〈�, ��〉.  
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We show that � is bounded. Now we must show that � is bounded and (�Y�) converges to it #/"Y‖�Y�‖ must be 

finite for every �, there is � such that � > 0. 

⇒ ‖�Y‖ ≤ �, ∀�  

⇒ ‖�Y�‖ ≤ �‖�‖  

⇒ limY→­‖�Y�‖ ≤ �‖�‖ $ℎ�# �)"!�&# ‖��‖ ≤ �‖�‖.  
Hence �  is bounded, by uniform boundness theorem. Finally〈��, �〉 = limY→­〈�Y�, �〉 ≦ 〈��, �〉 . Therefore 

� ≦ � ∎ 

3.4. Square Roots of Positive Operators 

3.4.1. Definition 

Let �: ( → ( be positive bounded self-adjoint linear operator on complex Hilbert space H. Then a bounded self-

adjoint operator ° is called a square root of � if, °g = �. In addition, ° ≧ 0, then ° is called a positive square root of � and 

is denoted by ° = � ]
^  exists and unique. 

3.4.1. Theorem 

Every positive bounded self-adjoint linear operator �: ( → ( on a complex Hilbert space ( has a positive square 

root A, which is unique. This operator A commutes with every bounded linear operator on ( which commutes with�. 

Proof. a) We show that if the theorem holds under the additional assumption � ≦ � it also holds without that 

assumption. If � = 0, we can take ° = � ]
^ = 0. Let � ≠ 0 by Cauchy-Schwarz inequality. 

〈��, �〉 ≦ ‖��‖‖�‖ ≦ ‖�‖‖�‖g = 〈��, �〉  
〈 �

‖�‖ �, �〉 = 〈��, �〉, #��A& ‖�‖ ≠ 0 #&$ ± = � 5
‖�‖�, We obtain 

〈±�, �〉 ≦ ‖�‖g = 〈��, �〉 $ℎ�$ �# ± ≦ �. 

Assuming that ± has a unique positive square root. Z = ±]
^ we have Zg = ± and � = ‖�‖± ⇒ � ]

^ = ‖�‖]
^ ±]

^ =
� ]

^ Z = ‖�‖Zg = ‖�‖± = �. Hence if we prove the theorem under the additional assumption � ≦ �.  
• We obtain the existence of the operator ° = � ]

^  �- )  °Y� → °� Cℎ&-& °² = 0 & 

  °Y	5 = °Y + 5
g ~� − °Yg� � = 0,1,2, … ���  

We consider���, since  °² = 0, C& ℎ�%& °5 = 5
g �, °g = � − 5

³ �g … ., 
°Y	5 = °Y + 5

g ~� − °Yg� � = 0,1,2, …  

Each °Yis polynomial in�, and they also commutes with �. We now prove 

 °Y ≦ � � = 0,1,2, …                (ii) 
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 °Y ≦ °Y	5 � = 0,1,2, …             (iii) 

 °Y� → °�, ° = � ]
^              (iv) 

V� = �V, ⇒ °V = V°              (v) 

Where V is a bounded linear operator on (. 

Proof �rr�. This is true for � = 0. Assume true for �. Since � − °YT5is self-adjoint 

� � − °YT5�g ≧ 0. Also � ≦ �. This implies � − � ≧ 0. From this ���and we obtain����. 
0 ≦ 5

g � � − °YT5�g + 5
g �� − ��  = � − °YT5 − 5

g ~� − °YT5g�  = � − °Y.  
⇒  0 ≦ � − °Y.  
Proof �rrr�. We use induction ��� gives 0 = °² ≦ °5 = 5

g � 

We show that °YT5 ≦ °Y for fixed � implies °Y ≦ °Y	5 from ��� we have; 

°Y	5 − °Y = °Y + 5
g ~� − °Yg� − °YT5 − 5

g ~� − °YT5g�  

= °Y − 5
g °Yg − °YT5 + 5

g °YT5g  

= °Y − °YT5 − 5
g °Yg + 5

g °YT5g  

 ≧ �°Y − °YT5)[I-
5
g �°Y + °YT5�e 

 = �°Y − °YT5�� − 5
g �2��e = 0. 

Hence °Y − °YT5 ≧ 0 and � � − 5
g �°Y + °YT5� ≧ 0. 

Therefore °Y ≦ °Y	5 � = 0,1,2, …. 
Proof �r´�.�°Y� Monotone increasing by ����� and °Y ≦ � by����. Hence (by the theorem monotone sequence) 

implies the existence of a bounded self-adjoint linear operator° . Such that°Y� → °� � - �!! � ∈ ( , since �°Y�� 

converges ��� gives  

°Y	5� − °Y� = 5
g ~�� − °Yg�� → 0 �# � → ∞  

 �� − °g� = 0 ∀�. 

�� = °g�, � ≠ 0. Hence � = °g. Also ° ≧ 0. Because 0 = °² ≦ °Y by ����� 

⇒ limY→­〈°Y�, �〉 = limY→­〈�, °Y�〉 = 〈�, °�〉 =〈°�, �〉 ≧ 0, by continuity of inner product 

Proof�´�. Let V ∈ µ�(, (� be any linear operator that commute with °. V°Y = °YV, ∀� 

Since°Y → °,  °YV� → °V�. Using continuity of inner product ofV, 

limY→­ V°Y� = V limY→­ °Y� = V°� = limY→­ °YV� = °V�. Hence V� = �V ⇒ °V = V° 
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• Uniqueness: Let both ° and Z be positive square root of �. Then°g = Zg = �. Also Z� = ZgZ = ZZg = �Z. So 

that °Z = Z° by �%�. Let � ∈ ( be arbitrary and � = �° − Z��. Then 〈°�, �〉 ≧ 0 & 〈Z�, �〉 ≧ 0, because ° ≧
0 & Z ≧ 0. Using °Z = Z° & °g = Zg we obtain 〈°�, �〉 + 〈Z�, �〉 = 〈�° + Z��, �〉 = 〈�°g − Zg��, �〉 = 0. 

Hence 〈°�, �〉 = 〈Z�, �〉 = 0, since ° ≧ 0 and °  is self-adjoint. It has itself a positive square root a , that is 

ag = °  and a  is self-adjoint. We obtain:0 = 〈°�, �〉 = 〈ag�, �〉 = 〈a�, a�〉 = ‖a�‖g ��� a� = 0, �!#  °� = ag� =
a�a�� = 0.  

Similarly, Z ≧ 0  and Z  is self-adjoint, it has itself a positive square root = . That is =g = Z and =  is self-

adjiont.0 = 〈Z�, �〉 = 〈=g�, �〉 = 〈=�, =�〉 = ‖=�‖g & =� = 0, also Z� = =g� = =�=�� = 0. Hence Z� = 0, sinceZ ≧
0 . Hence �° − Z�� = 0,  using � = �° − Z��, ∀ � ∈ (.  ‖°� − Z�‖g = 〈�° − Z�g�, �〉 = 〈�° − Z��, �〉 = 0.  Hence 

° = Z. Then ° is unique. ∎ 

Example 5 

Let �: µg�0,1� → µg�0,1�be a linear operator defined by  

����� = ����� � - �!! � ∈ µg�0,1�, � - �!! � ∈ �0,1�  

• Show that T is a positive operator. 

• Find the lower and upper bounds of T. 

• Find norm of T. 

Solution. (a) For all � ∈ µg�0,1� we have that. � is self-adjoint 

〈��, *〉 = ¶ �� ��*���� �� = ¶ �����*����� = 〈�, �*〉 5
²

5
² ∀ �, * ∈ µg�0,1�  

〈��, �〉 = ¶ ��~������5
² = ¶ �|����|g5

² �� ≧ 0. 

 Therefore � is positive operator.  

• First we Notice that 

� = #/"‖·‖45〈��, �〉 = #/"‖·‖45 ¶ �|����|g�� ≦ #/"‖·‖45 ¶ |����|g�� = 15
²

5
²   

We prove that � = 1, consider 

�̧ ��� = ¹ 0, �� � ∈ �0,1 − >�
>º]

^ , �� � ∈ �1 − >, 1e�.  

⇒ ‖�‖g = ¶ >T5��5
5T¸ = 1 &  

 � = 〈��̧ , �̧ 〉 = ¶ �|�̧ �|g�� = ¶ 3
¸ �� = 3^

g¸ |5T¸5 = 5T�5T¸�^
g¸

5
5T¸

5
² = 1  

 � = 1. 

 We proceed similarly in order to prove that ) = ���‖·‖45〈��, �〉 = 0 using the function 
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*¸��� = ¹>º]
^  , ��� ∈ �0, >e 0, �� � ∈ �>, 1e �  

Hence, ) = 0 

 (c) ‖�‖ = max�|)|, |�|� = #/"‖·‖45|〈��, �〉| = 1 

4. PROJECTIONS 

4.1.1 Definition 

Let ( be a Hilbert space over Complex number. A bounded linear operator f on is ( called: 

• a projection, if fg =P 

• An orthogonal projection, if  fg = P and P* = P. 

Note 

The range J���f� =  f�(� of a projection on a Hilbert space ( always is a closed linear subspace of ( on which 

f acts like the identity. If in addition f is orthogonal, then f acts like zero operator on�J�f��W. 

If � = � + E  with � ∈ J�f�  and E ∈ �J�f��W = ½�f�  is the decomposition guaranteed by the projection 

theorem, then f� = �. Thus the projection theorem sets up a one –to –one correspondence between orthogonal projection 

and closed linear subspaces.  

� = � + E = f� + �� − f��  

This show that the projection of ( onto XW �# � − f 

4.1.1. Theorem 

A bounded linear operator f: ( → ( on a Hilbert space ( is a projection if and only if f is self-adjoint and 

idempotent. 

Proof. �⇒�Suppose that f  is a projection on (  and denote f�(� U� X . Then fg = f  because for every � ∈
( ��� f� = � ∈ X we have; fg� = f� = �, hence fg� = f� ⇒ fg = f is idempotent. Now consider any two vectors 

�5, �gi (, from decomposition we can write�5 = �5 + E5  ��� �g = �g + Eg, where �5, �g ∈ X = J�f� ��� E5 , Eg ∈ XW =
¾�f� . Then, 〈�5, Eg〉 = 〈�g, E5 〉 = 0,  becauseX ⊥ XW . We show that f  is self-adjoint; 〈f�5, �g〉 = 〈�5, �g + Eg〉 =
〈�5, �g〉 = 〈�5 + E5 , �g〉 = 〈�5, f�g〉. Hence, f is self-adjoint. 

�⇐� Suppose that f is self-adjoint and idempotent, denoted f�(� by X. Then for every � ∈ ( 

 � = f� + �� − f��  

Orthogonality; X = f�(� ⊥ �� − f��(�, follows from:  

〈f�, �� − f�%〉 = 〈�, f�� − f�%〉 = 〈�, f% − fg%〉 = 〈�, 0〉 = 0.  
Let, ± =  �� − f� , � ⊂ ker± can see from ±f� = f� − fg� = ±f� = 0.  Next, � ⊃ ker ± , ±� = � − f� ⇒

±� = �. Hence X = M0N, since M0N is closed, so inverse image M�: ±f� = 0N = 2&-±. Hence X is closed subspace of (. 
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Therefore, X is projection on (. 
4.1.2. Theorem 

For any projection X on a Hilbert space (. 
• 〈f�, �〉 = ‖f�‖g 

• 0 ≤ f ≤ � 

• ‖f‖ ≦ 1; ‖f‖ = 1 �� f�(� ≠ M0N 
Proof.  

• 〈f�, �〉 = 〈fg�, �〉 = 〈f�, f�〉 = ‖f�‖g 

• 0 ≤ ‖f�‖g = 〈f�, f�〉 = 〈f�, �〉 ≤ ‖�‖g = 〈�, �〉 = � ⇒ 0 ≤ f ≤ � 

• By using Schwarz inequality; 

〈f�, �〉 ≦ ‖�‖g  

‖f�‖g ≦ ‖�‖g, #��A& ‖�‖ ≠ 0  

‖f‖ ≦ 1, ∀ � ∈ (               (1) 

‖f�‖ = ‖f�f��‖ ≦ ‖f‖‖f�‖  

‖f�‖ ≦ ‖f‖‖f�‖, #��A& ‖f‖ ≠ 0  

1 ≦ ‖f‖ …                (2) 

By combining (1) and (2) we get ;  ‖f‖ = 1 ∎ 

4.1.3. Theorem 

Products projections on Hilbert space ( are satisfying the following two conditions: 

• f = f5fg  is projection on H if and only if the projectionsf5 ��� fg  commute. Then f  projects (  onto X =
X5⋂Xg  Cℎ&-& Ẍ = f̈ �(�. 

• Two closed subspaces X and ; of ( are orthogonal if and only if the corresponding projections satisfyfÄfÅ = 0. 

Proof. I�⇐�. Suppose that f5 ��� fg commute, then show that f is self-adjiont and idempotentf∗ = �f5fg�∗ =
fg∗f5∗ = fgf5 = f5fg = f . Hence f∗ = f,  then f  is self-adjoint.  fg = �f5fg�g = �f5fg��f5fg� = f5gfgg = f5fg =
fgf5 = f. Then f is idempotent. Hence f is projection. Then f� = f5�fg�� = fg�f5�� = �, ∀ � ∈ (. Since f5 projects ( 

onto X5, we must have : 

f� = � = f5�fg��  ∈ X5  

f� = � = fg�f5�� ∈ Xg  

f� ∈ X5 ⋂ Xg  #��A& � ∈ ( was arbitrary. This show f  projects ( ��$  X = X5 ⋂ Xg . Actually f  projects ( 
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onto X. Indeed, if � ∈ X, then � ∈ X5 and y ∈ Xg. f� = f5fg� = f5� = �. Then � ∈ X5 ⋂ Xg , � ∈ X (&�A& X = X5 ⋂ Xg . 
�⇒� . Suppose f = f5fg  is projection defined on ( . It must be self-adjoint 〈f�5, �g〉 = 〈f5fg�5, �g〉 =

〈fg�5, fg�5〉 = 〈�5 , fgf5�g〉 = 〈�5,f�g〉. Then f5fg = fgf5. 

II �⇒�. If X ⊥ ;, $ℎ&� X ∩ ; = M0N ��� fÄfÅ� = M0N � - �!! � ∈ ( by part (a), so that fÄfÅ = 0. 

�⇐�.  If fÄfÅ = 0, then for every � ∈ X  and % ∈ ; . We obtain 〈�, %〉 = 〈fÄ�, fÅ%〉 = 〈�, fÄfÅ%〉 = 〈�, 0〉 = 0 . 

Hence X ⊥ ;. ∎ 

3.1.5 Theorem 

 Let f5 ��� fg be projections on Hilbert space (. Then: 

• The sum f = f5+fg is a projection on ( if and only if X5 = f5�(� ��� Xg = fg�(� are orthogonal. 

• If  f = f5+fg is a projection, f projects ( ontoX = X5 ⊕ Xg. 

Proof. I�⇒�. Suppose that f = f5+fg is a projection. 

Let � ∈ X5 ⇒ ‖�‖g ≥ ‖�f5+fg��‖g = 〈�f5+fg��, �f5+fg��〉 
= 〈�f5+fg�g�, �〉 = 〈�f5+fg��, �〉  
= 〈f5�, �〉 + 〈fg�, �〉  
= ‖�‖g + 〈fgg�, �〉  
= ‖�‖g + ‖fg�‖g ⇒ ‖fg�‖ = 0. 

For any � ∈ Xg and ∈ X5 〈�, �〉 = 〈�, fg�〉 = 〈fg�, �〉 = 〈0, �〉 = 0 ⇒ 〈�, �, 〉 = 0. Therefore  X5 ⊥ Xg. 

�⇐� If X5 ⊥ Xg , then fgf5 = f5fg = 0 which implies fg = f . Since fg and f5  are self-adjoint, so is f5 + fg . 

Hence f is projection. 

II. We determine the closed subspace X ⊂ (  onto which f  projects. Since f5 + fg, ∀ � ∈ ( . � = f� = f5� +
fg�. Here f5� ∈ X5 and fg� ∈ Xg hence, � ∈ X5 ⊕ Xg. 

So that;   

 X ⊂ X5 ⊕ Xg.               (1) 

We show that X ⊃ X5 ⊕ Xg. Let % ∈ X5 ⊕ Xg be arbitrary, then % = �5+�g, here  �5  ∈ X5 and  �g ∈ Xg applying in 

f.Using X5 ⊥ Xg, thus we obtain: "% = "5��5+�g� + "g��5+�g� = "5�5. Hence,  

  % ∈ X ��� X ⊃ X5 ⊕ Xg               (2) 

Combining �1� and �2 � we have; 

 X = X5 ⊕ Xg  

 

4.2 Further Properties of Projections 
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4.2.1 Theorem 

Let f5 and fg be projections defined on a Hilbert Space (. Denote by X5 = f5�(�and Xg = fg�(� the subspace 

onto which ( is projected by f5and fg, and let ½�f5� and ½�fg� be the Null space of these projection. Then the following 

conditions are equivalent. 

• fgf5 = f5fg = f5 

• X5 ⊂ Xg = f5�(� ⊂ fg�(� 

• ½�f5� ⊃ ½�fg� 

• ‖f5�‖ ≦ ‖fg�‖ 

• f5 ≦ fg 

Proof. �ii ⇒ i�. Suppose X5 ⊂ Xg = f5�(� ⊂ fg�(�. We want show that fgf5 = f5fg = f5. For every � ∈ (, we 

have f5� ∈ X5. Hence, f5� ∈ Xg by (ii.) fg�f5�� = f5� ⇒ fgf5 = f5  ⇒ �fgf5�∗ = f5∗fg∗ = f5fg = fgf5 = f5. Since, f5 

is self-adjoint. Therefore, f5 = f5fg = f5. 

�i ⇒ iv�. Suppose fgf5 = f5fg = f5. We want show that ‖f5�‖ ≦ ‖fg�‖ for all � ∈ ( 

⇒ 〈f5�, �〉 ≤ ‖�‖g, since f5� = � 

⇒ ‖f5�‖g ≤ ‖�‖g, for all � ∈ ( 

⇒ ‖f5‖g‖�‖g ≤ ‖�‖g, ‖�‖ ≠ 0. We have ‖f5‖ ≤ 1 by (1) 〈f�, �〉 = ‖f�‖g 

⇒ ‖f5�‖ = ‖f5fg�‖ ≦ ‖f5‖‖fg�‖ ≦ ‖fg�‖. 

Therefore, ‖f5�‖ ≦ ‖fg�‖ 

�iv ⇒ v�.  Suppose ‖f5�‖ ≦ ‖fg�‖ . We want show that f5 ≦ fg . From 〈f�, �〉 = ‖f�‖g  and (iv.) in present 

theorem we have for all � ∈ (. 〈f5�, �〉 = ‖f5�‖g ≦ ‖fg�‖g = 〈fg�, �〉 
Therefore, f5 ≦ fgby definition of positive operators. 

�v. ⇒ iii. �Suppose f5 ≦ fg. We want show that ½�f5� ⊃ ½�fg�. Let � ∈ ½�fg� ⟹ fg� = 0 by (iii.) sect. 2 and 

(v.) in the present theorem, ‖f5�‖g = 〈f5�, �〉 ≤ 〈fg�, �〉 = 〈0, �〉 = 0. Hence, f5� = 0, � ∈ ½�f5�. Therefore, ½ (f5 ) 

⊃½(fg�. ∎  

4.2.2. Theorem 

Letf5 & fg be Projections on a Hilbert space (. Then 

• The difference f = fg − f5 is a projection if and only if X5 ⊂ Xg where Ẍ = f̈ �(�. 
• If f = fg − f5 is a projection, f projects H onto X, where X is the orthogonal complement of X5 �� Xg. 

Proof.(⇒� Suppose that f = fg − f5 is a projection. We want to show that X5 ⊂ Xg. If f = fg − f5 is a projection. 

f = fg ⇒ fg − f5 = �fg − f5 �g = fgg − fgf5 − f5fg + f5g. 
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fg + fgf5 = 2f5,∗   
by theorem (2.2) (i.). Multiply both sides by fg we have: 

 fgf5fg + fgf5 = 2fgf5  

 f5fg + fgf5fg = 2 f5fg  

Hence fgf5fg = fgf5, fgf5fg = f5fg and by (∗) 

f5 =  f5fg =  f5  ∗∗   
Therefore, X5 ⊆ Xg. 

(⇐� SupposeX5 ⊂ Xg , where Ẍ = f̈ �(� ⇒ fg = �fg − f5 �g = fgg − fgf5 − f5fg + f5g = fg − f5 . Therefore, 

f is idempotent. ⇒ f∗ = �fg − f5 �∗ = fg∗ − f5∗ = fg − f5 . Therefore f is self-adjoint. 

 ∴ f is projection. 

(b) X = f�(�consists of all vectors of the form 

 (8) X = f� = fg� − f5� � - �!! � ∈ ( 

 Since fgf5 = f5fg = f5 �)"!�&# X5 ⊂ Xg 

 fg� = fgg� − fgf5� = fg� − f5� = �  

This show that y∈ Xg, also from (8) and (1) 

 f5� = f5fg� − f5g� = f5� − f5� = 0  

⇒ f5� = 0  

� ∈ ½�f5� = X5W  

Together � ∈ ; Cℎ&-& ; = Xg ∩ X5W, since the projection of H onto X5W is � − f5, every % ∈ ; 

is the form  

(9) % = � � − f5� +  �g, (�g ∈ Xg� 

Using again,fgf5 = f5, we obtain from (9), since fg�g = �g 

f% = �fg − f5��� − f5��g  

= ~fg − fgf5 − f5 + f5g��g  

= �fg − fgf5 − f5 + f5��g = �fg − f5��g  

= fg�g−f5�g = �g−f5�g = %  

 ∴ f% = % so that % ∈ X, since % ∈ ; was arbitrary 

∴ X ⊇ ;  
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∴ X = f�(� = ; = Xg ∩ X5W  

4.2.3. Theorem 

Let fY is a monotone increasing sequence of projection fY defined on a Hilbert Space (. Then  

• (fY ) is strongly operator convergent, say fY� → f�  for every � ∈ (, and the limit operator f  is a projection 

defined on (. 

• f projects ( onto  

• f�(� = ⋃ fY�(�­Y45  

• f has the null space  

½�f� = ⋂ ½�fY�­Y45   

Proof a) Let ) < �, by assumption,f̄ ≦ fY, so that we have f̄ �(� ⊂ fY�(� and fY − f̄  is projection. Hence 

for every fixed � ∈ (, we obtain by 2.1.2 

‖fY� − f̄ �‖g = ‖�fY − f̄ ��‖g = 〈�fY − f̄ ��, �〉 = ‖fY�‖g − ‖f̄ �‖g.  
Now ‖fY‖ ≤ 1  by 3.1.2, so that ‖fY�‖ ≤ ‖�‖  for all  � . Hence, �‖fY�‖�  is bounded a sequence of 

numbers.�‖fY�‖�is also monotone by 3.2.1. Since�fY�is monotone. Hence limY→­ fY� ⟶ f� is converges. Since �fY�� is 

Cauchy. 

‖fY� − f̄ �‖ = ‖�fY − f̄ ��‖ ≤ ‖fY − f̄ ‖‖�‖  

⟹ limY→­ fY� = f�, since ( is complete. 

The linearity of f. 

f�F� + o�� = limY→­ fY�F� + o��  

= limY→­�fYF� + fYo��  

= F limY→­ fY� + o limY→­ fY �  

= Ff� + of�  

⟹ ‖fY�‖ ≤ ‖fY‖‖�‖ ⟹ ‖fY�‖ ≤ ‖fY‖‖�‖  

⟹ ‖fY�‖ ≤ ‖�‖  

⟹ ‖"Y‖ ≤ ‖�‖. Therefor fYis bounded, 

〈fY�, �〉 = 〈�, fY∗�〉 = 〈�, fY�〉 , therefore  fY is self-ad joint, and 

〈fYg�, �〉 = 〈fY�, fY�〉 = 〈�, fY�〉 = 〈fY�, �〉, hence fY  is projection. 

b). We determine f�(�. Let ) < �. Then f̄ ≦ fY, that is fY − f̄ ≧ 0 and 〈�fY − f̄ ��, �〉 ≧ 0. The continuity 

of inner product  

limY→­〈�fY − f̄ ��, �〉 = limY→­〈�, �fY − f̄ ��〉  
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= limY→­〈�, �f − f̄ ��〉  
∴  〈�f − f̄ ��, �〉 ≧ 0. 

That is f̄ ≦ f and 3.2.1 yields f̄ �(� ⊂ f�(� for every ). Hence ∪ f̄ �(� ⊂ f�(�. Furthermore, for every ) 

and for every � ∈ (, we have, f̄ � ∈ f̄ �(� ⊂∪ f̄ �(�. Since f̄ � ⟶ f�, f� ∈ ∪ f̄ �(�. Hence f�(� ⊂ ∪ "¯�(� 

∪ f̄ �(� ⊂ f�(� ⊂ ∪ f̄ �(�  

⇒ f�(� = ½�� − f� = M0N  
⇒ f�(� = M0Nis closed  

∴  f�(� = ⋃ f̄ �(�­̄45   

c). We determine ½�f� 

½�f� = f�(�W ⊂ fY�(�Wfor all �. Since f�(� ⊃ fY�(� by part (b). Hence ½�f� ⊂∩ fY�(�W =∩ ½�fY� 

⇒ ½�f� ⊂∩ ½�fY�                                                                                                                                                (1) 

 On other hand, if � ∈ ∩ ½�fY�, then � ∈  ½�fY� for all �. So that fY� = 0 and  fY� ⟶ f� ⟹ f� = 0. That 

is � ∈  ½�f�. Since � ∈  ½�fY� was arbitrary.  

∩ ½�fY� ⊂ ½�f�                                                                                                                                                  (2) 

By combining (1) and (2) we gets  

 ½�f� = ⋂ ½�fY�­Y45   

Example 6 

Let  f: a¥ → a¥  be the linear operator defined by f��, �, E� = ��, �, 0�, ∀ �, �, E ∈ a¥.  Then f is orthogonal 

projection. 

Solution 

Since a¥ is finite dimensional f ∈ Z�a¥� ��� A!&�!� fg = f. 
Follows from 〈f��, �, E�, �/, %, C�〉 = �/ + �% = 〈��, �, E�, f�/, %, C�〉.  Then f  is self-adjoint. Therefore f is 

projection. Orthogonal projection of f has:�)" = M��, �, 0�: �, � ∈ ℂN orthogonal projection f matrix representation: 

� = Í1 0 00 1 00 0 0Î.  
In generally a � × �  diagonal matrix whose diagonal element either 0  - 1  is the matrix of an orthogonal 

projection Z�a¥�. 
 

 

5. SPECTRAL FAMILY 
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5.1.1 Definition 

A one-parameter family of projection is called spectral family. Spectral family can be obtained from the finite 

dimension case as follows. Let �: ( ⟶ ( be a self-adjoint linear operator on a unitary space Ï = ℂs. Then � is bounded 

and we may choose a basis for ( and represent � by a Hermitian matrix which we denote simply by �. The spectrum of the 

operator consists of the eigenvalues of that matrix which are real. For simplicity let us assume that the matrix � has � 

different eigenvalues �5 < �g < �¥ < ⋯ < �Y . Then theorem 1.1.1(6) implies that �  has an orthonormal set of � 

eigenvectors �5, �g … �Y where �̈  corresponding to�̈  and we write these vectors as column vectors. This a basis for (, so 

that every � ∈ ( has a unique representation  

 � = ∑ Ð̈ �̈Ÿ45 , Ð̈ = 〈�, �̈ 〉 = ���̈                                                                                                                          (1) 

In (1) we obtain the second formula from the first one by taking the inner product〈�, ��〉, where �� is fixed and 

using the orthonormality. The essential fact in (1) is that �̈  is an eigen vectors of � , so that we haveL�Ñ = ÒÑ�Ñ , 

consequently, if we apply � to (1) we simply obtain  

 �� = ∑ �̈ Ð̈ �̈  Ÿ45                                                                                                                                                    (2) 

Looking at (1) more closely, we see that we can define an operator  

f̈ : ( ⟶ (                                                                                                                                                                (3) 

� ↦ Ð̈ �̈ ⇒ "¨� = Ð̈ �̈ = 〈�, �̈ 〉�̈ .f̈  is the projection (orthogonal projection) of (  onto the eigenspace of � 

corresponding to �̈ . Formula (1) can now be written,  

� = ∑ f̈ �  Ÿ45                                                                                                                                                           (4) 

Hence, � = ∑ f̈Ÿ45 . Where � is identity operator on (. Formula (2) becomes  

�� = ∑ �̈ f̈ �  Ÿ45                                                                                                                                                     (5) 

Hence � = ∑ �̈ f̈Ÿ45 . This is representation of � in terms of projection. Instead of the projection f5, fg, … , fY 

themselves we take sums of such projection. More precisely, for any real � we define, 

 �� = ∑ f̈  �Ô≦�  �� ∈ ℝ�                                                                                                                                           (6) 

Hence��g = �� , moreover ��  is symmetric operator. This is one-operator family of projection, �  being the 

parameter. From (6) we see that for any � the operator �� is the projection of ( onto the subspace ;� spanned by all those 

�̈  for which �̈ ≦ � it follows that ;� ⊂ ;Õ �� ≦ ��. As � traverse ℛ in the positive sence�� grows from 0 to �. The growth 

occurring at the eigenvalues of � and �� remaining unchanged for � in any interval that is free of eigenvalues. 

Properties of ×Ò 

• ���Õ = �Õ�� = ��, if � < � 

• �� = 0, if � < �5 

• �� = �, if � ≧ �Y 
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• ��	Ø = limÕ→�	Ø �Õ = �� 

Definition 

A real spectral family (or real decomposition unity) is a one parameter family ℇ = ����, � ∈ ℝ of projection �� 

defined on Hilbert space ( (of any dimension) which depends on a real parameter � and such that,  

�� ≦ �Õ                                                                                                                                                                   (7) 

Hence, ���Õ = �Õ�� = ��, � < � 

 lim�→T­ ��� = 0                                                                                                                                                  (8a) 

 lim�→	­ ��� = �                                                                                                                                                  (8b) 

��	Ø� = limÕ→�	Ø �Õ� = ��� �∀ � ∈ (�                                                                                                                (9) 

We see from the definition that a real spectral family can be regarded as a mapping Ú ⟶ Û�Ï, Ï�, � ⟶ ��; 

Strongly operator continuous from right. To each � ∈ J there is corresponds a projection ×Ò ∈  Û�Ï, Ï�, where ℬ�(, (� is 

the space of all bounded linear operators from ( into (. We assume, for simplicity, that the eigenvalues �5, �g, … , �Y of � 

are all different and �5 < �g, < ⋯ < �Y. Then we have,  

 ��] = f5  

��^ = f5 + fg  

��Ý = f5 + fg + f¥  

⋮  
��Y = f5 + fg + ⋯ + fY. 

Hence, conversely ; 

f5 = ��]  

f̈ = ��̈ − ��̈ T5 j=2, …,n 

Since �� remains the same for � in the intervalß�̈ T5,��̈ �, this can be writtenf̈ = ��̈ − ��̈ T². Now equation (4) 

becomes � = ∑ f̈ �Ÿ45 = ∑ ~��̈ − ��̈ T²��Ÿ45  and equation (5) becomes  

�� = ∑ �̈ f̈ �Ÿ45 = ∑ �̈ ~��̈ − ��̈ T²��Ÿ45 .  
If we drop the � and write @�� = �� − ��T². Since �� = ∑ f̈�Ô≦� . We arrive at 

� = ∑ �̈ @��̈Ÿ45                                                                                                                                                   (10) 

This is the spectral representation of the self-adjoint linear operator � with eigenvalues �5 < �g, < ⋯ < �Y on that 

n-dimensional Hilbert space (. The representation shows that for  

any �, � ∈ (, 
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〈��, �〉 = ∑ �̈ 〈@��Ô�, �〉Ÿ45                                                                                                                                  (11) 

We note that this may be written as a Riemann-stieltjes integral 

 〈��, �〉 = ¶ ��C���	­
T­ … … … … … … … … �12�.  

Where C��� = 〈���, �〉. 
5.2 Spectral Family of a Bounded Self-Adjiont Linear Operator  

To define Spectral family�>� we need the operator  �� = � − �� from resolvent theorem ‖���‖ ≧ A‖�‖. Then 

ℬ�g = ��g, the positive square root of ��g denote by ℬ�g. ℬ� = ~��g�]
^ = |��| and operator ��	 = ]

^�ℬà	�à�which is called 

positive part of �� . The spectral family > of � is then defined by ℇ = ����, � ∈ ℝ, where �� is the projection of ( onto the 

null space ½���	�of ��	. We proceed step wise and consider at first the operator: 

 ℬ = ��g�]̂
(Positive square root of �g), 

 �	 = ]
^�ℬ	�� (Positive part of �), 

�T = ]
^�ℬT��(Negative part of �), 

and the projection of ( onto the null space of �	 which we denote by �. 

�: ( ⟶ ; = ½��	� = ker ��� − ��	  

� = �	 − �T ⟹ 5
g �ℬ + �� − ]

^�ℬT�� = �	 − �T  

 ⟹ 5
g ℬ + 5

g � − 5
g ℬ + 5

g � = �	 − �T 

⟹ L = L	 − LT by subtraction 

ℬ = �	 + �T ⟹ �	 + �T = 5
g �ℬ + �� + ]

^�ℬT��.  
 = 5

g ℬ + 5
g � + 5

g ℬ − 5
g �. 

 = ℬ 

 ⟹ Û = L	 + LT by addition. 

5.2.1 Lemma 

The operators just defined have the following properties 

• ℬ, �	and �Tare bounded and self-adjoint  

• ℬ, �	and �T commute with every bounded linear operator that � commute with; in particular  

•  ℬ� = �ℬ �	� = ��	�T� = ��T�	�T = �T�	 

• � commutes with every bounded self-adjoint linear operator that � commute with; in particular  
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•  �� = �� �ℬ = ℬ� 

• Furthermore  

• �	�T = 0 �T�	 = 0 

• �	� = ��	 = 0 �T� = ��T = �T 

• �� = −�T  ��� − �� = �	 

• �	 ≧ 0 �T ≧ 0 

Proof. a 

• Claim 1 ℬ is bounded 

Proof of Claim 1 

 ‖ℬ‖g = 〈ℬ, ℬ〉 ≤ 〈�	 + �T, �	 + �T〉 
            = �	�	 + �	�T + �T�	 + �T�T 

            ≤ ‖�	‖g + �	�T + �T�	 + ‖�T‖g 

            = ‖�	‖g + 2J&〈�	, �T〉 + ‖�T‖g  

             ≤ ‖�	‖g + 2|〈�	, �T〉| + ‖�T‖g 

              ≤ �‖�	‖ + ‖�T‖�g 

       ‖ℬ‖ ≤ ‖�	‖ + ‖�T‖ 

 ∴ ℬ is bounded ⟺ continuous. Since � = 1 

Claim 2ℬ is self-adjoint 

Proof of Claim 2 Since ℬ = �	 + �T 

〈ℬ�, �〉 = 〈��	 + �T��, �〉 = 〈�, ��	 + �T�∗�〉  
 = 〈�, ℬ∗�〉 
⇒ ℬ = ℬ∗  

∴ ℬ is self-adjoint 

• Suppose �V = V�. Then �gV = �V� = V�g  and ℬV = Vℬ  follows from theorem (positive square root) �	V =
5
g �ℬV + �V� = 5

g �Vℬ + V�� = V�	 . Therefore, �	V = V�	  ⇒ �TV = V�T ⇒ �TV = 5
g �ℬV − �V� =

5
g �Vℬ − V�� = V�T.  

Then show that T	TT = TTT	. 

�	�T = 5
g �ℬV + �V�. 5

g �ℬV − �V� = 5
g �Vℬ − V��. 5

g �Vℬ + V�� = �T�	 ⇒ �	�T = �T�	.  
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• For every � ∈ ( C& ℎ�%& � = �� ∈ X = ½��	� = �&-��	�.  Hence �	� = 0 ��� V�	X = V0 = 0. From 

TS=ST and (b) we have S�	 = �	V ��� �	V�� = �	V� = V�	� = V0 = 0 ⇒  �	V�� = 0, ℎ&�A& V�� ∈
X. #��A& � "- G&A$# (  �$  X. We thus have �V�� = V��. For every � ∈ (.that is �V� = V�. A projection is 

self adjoint. �V = �∗V∗ = �V��∗ = ��V��∗ = �∗V∗�∗ = �V� = V�. Therefore, �V = V�. 

We prove �3� − �6� 

Proof (3)  

From Z = ��g�]
^  ⇒ Zg = �g, ��� �!#  Z� = �Z U� �6�  Hence �	�T = �T�	 = 5

g �Z − ��. 5
g �Z + �� =

5
¦ �Zg + Z� − �Z − �g� = 0 ⇒  �	�T = �T�	 = 0 

Proof (4) 

Let �	�� = 0 ∀ � ∈ (, since �	 is self adjoint. We have ��	� = �	�� = 0 U� �3� ��� �A�. Therefore, ��	 =
�	� = 0 . Furthermore �	�T� = 0 U� �8�, #  $ℎ�$ �T� ∈ ½��	� = 2&-��	� . Hence ��T� = �T�� = �T� ∀� ∈ ( . 

Therefore, ��T = �T� = �T 

Proof (5)  

From a, b and (4), since � = �	 − �Twe have �� = ��	 − �T�� = �	� − �T� = −�T� . �� = −�T , since 

�Tis self adjoint. Again by (4) ��� − �� = � − ��=� + �T = �	. Therefore, ��� − �� = �	. 

Proof (11) By (4) and (b) �T = ��T + ��	 = ���T+�	� = �Z ≧ 0, since � and Z  are self-adjoint and � ≧ 0  and 

Z ≧ 0 by definition of positive operators. 

 �	 = Z − �T = Z − �Z = �� − ��Z ≧ 0  

∴ �	 ≧ 0, #��A& � − � ≧ 0 and B≧ 0 

In second step instead of L we consider LÒ = L − Òê 

Instead of Z, �	, �T and �  we now have to take  Z� = ~��g�]
^ ,  ��	 = 5

g �Z� + ��� .  ��T = 5
g �Z� − ��� and 

projection  ��: ( → X� = ½���	�. 

5.2.2. Lemma 

The previous lemma remains true if we replace.�, Z, �	, �T, � U� �� , Z� , ��	, ��T, ��  Respectively, where 

� �# -&�!, moreover, for any real ë. �, �, ì, í � !! C��*  "&-�$ - �!! A ))/$&: �î , Z� , �Õ	, �ïT, �ð 

5.2.1. Theorem 

Let �: ( → ( is a bounded self-adjoint linear operator on a complex Hilbert space H. Furthermore, let 

��(� �# -&�!) be the projection of H onto the null spaceX� = ½���	� of the positive part ��	 of �� = � − ��.then > =
�����∈ℝ is spectral family on the interval �), �e ⊂ ℝ, where ) and � are given by�1� see section 3.2. 

Proof. We shall prove � < � ⇒ �� < �Õ 
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 � < ) ⇒ �� = 0. 

 � ≥ � ⇒  �� = �.  
 � → � + 0 ⇒ Eò� →  ���. 

In the proof we use part of Lemma 5.2.2 formulated for LÒ, Ló, LÒ	 &$A instead of �, �	 &$A  
�Õ	�ÕT = 0   
���� = −��T���� − ��� = ��	�ÕEò = −�ÕT  

 ��	 ≧ 0 ��T ≧ 0 �Õ	 ≧ 0 �ÕT ≧ 0   
Proof (7) 

Let  � < � we have �� = ��	 − ��T ≦ ��	 U&A/�#& − �T ≦ 0 . Hence ��	 − �Õ ≧ �� − �Õ = �� − ��� ≧ 0 . 

��	 − �Õ is self-adjiont and commutes with �Õ	  by Lemma of 5.2.2 and �Õ	 ≧ 0.  Theorem 3.3.1 �Õ	~��	 − �Õ� =
�Õ	~��	 − �Õ	 + �ÕT� ≧ 0.  Here  �Õ	�ÕT = 0.  Hence�Õ	��	 ≧ �Õ	g ∀ � ∈ ( . 〈�Õ	��	�, �〉 ≧ 〈�Õ	g�, �〉 = :�Õ	�:g ≧
0. Since �Õ	is self-adjoint. This show that ��	� = 0 ⇒ �Õ	� = 0. Hence ½���	� ⊂ ½~�Õ	�. 

 �� < �Õ  � - � < �   
Proof (8) 

Suppose not �� ≠ 0 ⇒  ��E ≠ 0 � - ∃ E , we set � = ��E . Then ��� = ��gE = ��E = � , we may assume 

‖�‖ = 1. 

〈�����, �〉 = 〈���, �〉 = 〈��, �〉 − � ≧ ���‖3�‖45〈���, ��〉 − � = ) − � > 0,  contradiction the fact that � > ) . 

���� = −��T ≦ 0. 
 ���� = 0 ⇒ ��=0 

 ∴  � < ) ⇒ �� = 0  

Proof (9) 

Suppose � > �  but �� ≠ � so that � − �� ≠ 0 . Then �� − ���� = � for some �  of norm 1. Hence 〈���� −
����, �〉 = 〈���, �〉 = 〈��, �〉 − � ≤ #/"‖3�‖〈〈���, ��〉 − �〉 = � − � < 0. Then there is contradiction. 

 ���� − ��� = ���	� ≧ 0   
∴  � ≥ � ⇒  �� = �   

6. REFERENCES 

1. Erwin Kreysyzing. Introductory Functional Analysis With Applications. John Wiley and sons New York. 1978 

2. E.TAYLOR. A. Introduction to Functional Analysis New York, john Wiley and sons, Inc 1958 

3. E.TAYLOR. A and C. LAY. D. Introduction to Functional Analysis second edition John Wiley and son.inc 1980. 



134                                                                                                                                                                     Gezahegn Anberber Tadesse 
  

 
NAAS Rating: 3.00- Articles can be sent to editor@impactjournals.us 

 

4. PEDERSON.M. Function Analysis In Applied Mathematics And Engineering. Florid.CRC press LLC 2000. 

5. Deumlich. R. Functional Analysis (I) and (II) Teaching Material, Addis Ababa University 1997. 


